Multifunctional Crown Ether Additive Regulates Desolvation Process to Achieve Highly Reversible Zinc‐Metal Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-09 DOI:10.1002/aenm.202404450
Aohua Wu, Shaojie Zhang, Qiaohui Li, Wenxian Xue, Chuanyang Li, Baojuan Xi, Wutao Mao, Keyan Bao, Shenglin Xiong
{"title":"Multifunctional Crown Ether Additive Regulates Desolvation Process to Achieve Highly Reversible Zinc‐Metal Batteries","authors":"Aohua Wu, Shaojie Zhang, Qiaohui Li, Wenxian Xue, Chuanyang Li, Baojuan Xi, Wutao Mao, Keyan Bao, Shenglin Xiong","doi":"10.1002/aenm.202404450","DOIUrl":null,"url":null,"abstract":"Aqueous zinc‐ion batteries have garnered significant attention due to their abundant materials, low production costs, and safety. However, these batteries suffer from severe side reactions, which are closely associated with the presence of a substantial amount of solvent at the electrode surfaces. Herein, 1,4,7,10,13,16‐hexaoxacyclooctadecane (18‐crown‐6) is added to the electrolyte to illustrate both theoretically and experimentally its contribution to the rapid desolvation aspect. It is shown that the addition of 18‐crown‐6 to the electrolyte greatly facilitates the desolvation of the solvated structure and prevents the collection of solvent molecules on the surface of zinc anode, thus inhibiting the hydrogen precipitation reaction. It also enhances the transference number of zinc ions, which makes the interfacial electric field on the zinc anode stable and thus promotes the orderly diffusion and uniform nucleation of Zn<jats:sup>2+</jats:sup>, and inhibits the growth of dendrites. As a result, the electrolyte containing 18‐crown‐6 as additives shows a stable cycle life, Zn||Zn symmetric cell is cycled for nearly 1700 h at 1 mA cm<jats:sup>−2</jats:sup>, showing a significant improvement in Coulombic efficiency. The assembled Zn||NH<jats:sub>4</jats:sub>V<jats:sub>4</jats:sub>O<jats:sub>10</jats:sub> cell exhibits excellent electrochemical performance, reaching a capacity of 100.9 mAh g<jats:sup>−1</jats:sup> even after 4000 cycles at 10.0 A g<jats:sup>−1</jats:sup>.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"35 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc‐ion batteries have garnered significant attention due to their abundant materials, low production costs, and safety. However, these batteries suffer from severe side reactions, which are closely associated with the presence of a substantial amount of solvent at the electrode surfaces. Herein, 1,4,7,10,13,16‐hexaoxacyclooctadecane (18‐crown‐6) is added to the electrolyte to illustrate both theoretically and experimentally its contribution to the rapid desolvation aspect. It is shown that the addition of 18‐crown‐6 to the electrolyte greatly facilitates the desolvation of the solvated structure and prevents the collection of solvent molecules on the surface of zinc anode, thus inhibiting the hydrogen precipitation reaction. It also enhances the transference number of zinc ions, which makes the interfacial electric field on the zinc anode stable and thus promotes the orderly diffusion and uniform nucleation of Zn2+, and inhibits the growth of dendrites. As a result, the electrolyte containing 18‐crown‐6 as additives shows a stable cycle life, Zn||Zn symmetric cell is cycled for nearly 1700 h at 1 mA cm−2, showing a significant improvement in Coulombic efficiency. The assembled Zn||NH4V4O10 cell exhibits excellent electrochemical performance, reaching a capacity of 100.9 mAh g−1 even after 4000 cycles at 10.0 A g−1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Multifunctional Crown Ether Additive Regulates Desolvation Process to Achieve Highly Reversible Zinc‐Metal Batteries Photocatalytic Reforming Raw Plastic in Seawater by Atomically‐Engineered GeS/ZnIn2S4 From Experimental Values to Predictive Models: Machine Learning-Driven Energy Level Determination in Organic Semiconductors Rapid Scalable One-step Production of Catalysts for Low-Iridium Content Proton Exchange Membrane Water Electrolyzers (Adv. Energy Mater. 1/2025) Conformal Li2O2 Growth and Decomposition Within 3D Lithiophilic Nanocages of Metal–Organic Frameworks for High-Performance Li─O2 Batteries (Adv. Energy Mater. 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1