Minyeong Hong;Suh-Yeon Dong;Roger S. McIntyre;Soon-Kiat Chiang;Roger Ho
{"title":"fNIRS Classification of Adults With ADHD Enhanced by Feature Selection","authors":"Minyeong Hong;Suh-Yeon Dong;Roger S. McIntyre;Soon-Kiat Chiang;Roger Ho","doi":"10.1109/TNSRE.2024.3522121","DOIUrl":null,"url":null,"abstract":"Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed a functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques to differentiate between healthy controls (N =75) and ADHD individuals (N =120). Efficient feature selection in high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose a hybrid feature selection method that combines a wrapper-based and embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed method facilitated streamlined feature selection and hyperparameter tuning in high-dimensional data, thereby reducing the number of features while enhancing accuracy. HbO features from the combined frontal and temporal regions were key, with the models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy (89.74%), MCC (78.36%), and GDR (88.45%). The outcomes of this study highlight the promising potential of combining fNIRS with ML as diagnostic tools in clinical settings, offering a pathway to significantly reduce manual intervention.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"220-231"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813598","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10813598/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed a functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques to differentiate between healthy controls (N =75) and ADHD individuals (N =120). Efficient feature selection in high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose a hybrid feature selection method that combines a wrapper-based and embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed method facilitated streamlined feature selection and hyperparameter tuning in high-dimensional data, thereby reducing the number of features while enhancing accuracy. HbO features from the combined frontal and temporal regions were key, with the models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy (89.74%), MCC (78.36%), and GDR (88.45%). The outcomes of this study highlight the promising potential of combining fNIRS with ML as diagnostic tools in clinical settings, offering a pathway to significantly reduce manual intervention.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.