Vijay Balasubramanian, Ben Craps, Juan Hernandez, Mikhail Khramtsov, Maria Knysh
{"title":"Factorization of the Hilbert space of eternal black holes in general relativity","authors":"Vijay Balasubramanian, Ben Craps, Juan Hernandez, Mikhail Khramtsov, Maria Knysh","doi":"10.1007/JHEP01(2025)046","DOIUrl":null,"url":null,"abstract":"<p>We generalize recent results in two-dimensional Jackiw-Teitelboim gravity to study factorization of the Hilbert space of eternal black holes in quantum gravity with a negative cosmological constant in any dimension. We approach the problem by computing the trace of two-sided observables as a sum over a recently constructed family of semiclassically well-controlled black hole microstates. These microstates, which contain heavy matter shells behind the horizon and form an overcomplete basis of the Hilbert space, exist in any theory of gravity with general relativity as its low energy limit. Using this representation of the microstates, we show that the trace of operators dual to functions of the Hamiltonians of the left and right holographic CFTs factorizes into a product over left and right factors to leading order in the semiclassical limit. Under certain conditions this implies factorization of the Hilbert space.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)046.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)046","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize recent results in two-dimensional Jackiw-Teitelboim gravity to study factorization of the Hilbert space of eternal black holes in quantum gravity with a negative cosmological constant in any dimension. We approach the problem by computing the trace of two-sided observables as a sum over a recently constructed family of semiclassically well-controlled black hole microstates. These microstates, which contain heavy matter shells behind the horizon and form an overcomplete basis of the Hilbert space, exist in any theory of gravity with general relativity as its low energy limit. Using this representation of the microstates, we show that the trace of operators dual to functions of the Hamiltonians of the left and right holographic CFTs factorizes into a product over left and right factors to leading order in the semiclassical limit. Under certain conditions this implies factorization of the Hilbert space.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).