Ebru Deniz Ünal, Enes Duymaz, Serdar Batıkan Kavukcu, Senthil Rethinam, Gülşah Türkmen, Bahri Başaran, Hayati Türkmen
{"title":"Novel water-soluble gelatin-based platinum nanoparticles for targeted cancer therapy with enhanced cytotoxicity","authors":"Ebru Deniz Ünal, Enes Duymaz, Serdar Batıkan Kavukcu, Senthil Rethinam, Gülşah Türkmen, Bahri Başaran, Hayati Türkmen","doi":"10.1007/s11051-024-06212-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of effective and targeted cancer therapies remains a significant challenge. Platinum-based drugs are widely used but often suffer from limitations such as systemic toxicity and resistance. This study presents a novel approach to address these limitations by developing water-soluble gelatin-based platinum nanoparticles (PtNPs) for enhanced cancer therapy. The incorporation of gelatin and curcumin into these nanoparticles offers potential advantages in terms of biocompatibility, targeted delivery, and synergistic therapeutic effects. The PtNPs were conveniently synthesized using a nanosuspension technique, offering a potentially scalable and straightforward method for nanoparticle production. The synthesized PtNPs were thoroughly characterized using various techniques. The investigation assessed the cytotoxic properties of the PtNPs in MCF-7 (breast cancer) and HepG2 (liver cancer) cell lines. The average size of PtNPs was found to vary around 120–200 nm. The density of platinum metal was supported by EDS and metal mapping analysis. The IC<sub>50</sub> values of PtNPs in MCF-7 and HepG2 cancer cell lines were found to be 6.450 and 7.992 μL/mL, respectively. The incorporation of gelatin and curcumin into platinum nanoparticles represents a unique and innovative strategy for enhancing nanoparticle biocompatibility, targeting, and therapeutic efficacy.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06212-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of effective and targeted cancer therapies remains a significant challenge. Platinum-based drugs are widely used but often suffer from limitations such as systemic toxicity and resistance. This study presents a novel approach to address these limitations by developing water-soluble gelatin-based platinum nanoparticles (PtNPs) for enhanced cancer therapy. The incorporation of gelatin and curcumin into these nanoparticles offers potential advantages in terms of biocompatibility, targeted delivery, and synergistic therapeutic effects. The PtNPs were conveniently synthesized using a nanosuspension technique, offering a potentially scalable and straightforward method for nanoparticle production. The synthesized PtNPs were thoroughly characterized using various techniques. The investigation assessed the cytotoxic properties of the PtNPs in MCF-7 (breast cancer) and HepG2 (liver cancer) cell lines. The average size of PtNPs was found to vary around 120–200 nm. The density of platinum metal was supported by EDS and metal mapping analysis. The IC50 values of PtNPs in MCF-7 and HepG2 cancer cell lines were found to be 6.450 and 7.992 μL/mL, respectively. The incorporation of gelatin and curcumin into platinum nanoparticles represents a unique and innovative strategy for enhancing nanoparticle biocompatibility, targeting, and therapeutic efficacy.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.