Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine
{"title":"Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine","authors":"Mohammad Amiri, Zahra Hashemi, Fereshteh Chekin","doi":"10.1007/s10856-024-06847-2","DOIUrl":null,"url":null,"abstract":"<div><p>The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract. A catalyst based on ZnO nanoparticles-nitrogen doped porous reduced graphene oxide (ZnO-NprGO) was prepared by hydrothermal method and characterized. The diameter of ZnO nanoparticles was ~22–37 nm, which were inserted between the NprGO sheets effectively prevented their aggregation. The ZnO-NprGO hybrid had high surface area and good electro-catalytic property, suiting for determination of HCQ. The ZnO-NprGO modified carbon paste electrode (CPE)-based sensor operated in a wide concentration range of 0.07–5.5 μmol L<sup>−1</sup> with low limit of detection of 57 nmol L<sup>−1</sup> and sensitivity of 14.175 μA μmol<sup>−1</sup> L. Remarkably, the ZnO-NprGO/CPE sensor indicated acceptable accuracy, reproducibility, and stability. In addition, the proposed sensor was applied to detection of HCQ in biological samples and the recoveries were 92.0–102.5%, with relative standard deviations of 1.9–4.3%. The unique physical structure of ZnO-NprGO, as well as its chemical and electrical properties, make it promising interface for use in sensors and nanoelectronic applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06847-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06847-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract. A catalyst based on ZnO nanoparticles-nitrogen doped porous reduced graphene oxide (ZnO-NprGO) was prepared by hydrothermal method and characterized. The diameter of ZnO nanoparticles was ~22–37 nm, which were inserted between the NprGO sheets effectively prevented their aggregation. The ZnO-NprGO hybrid had high surface area and good electro-catalytic property, suiting for determination of HCQ. The ZnO-NprGO modified carbon paste electrode (CPE)-based sensor operated in a wide concentration range of 0.07–5.5 μmol L−1 with low limit of detection of 57 nmol L−1 and sensitivity of 14.175 μA μmol−1 L. Remarkably, the ZnO-NprGO/CPE sensor indicated acceptable accuracy, reproducibility, and stability. In addition, the proposed sensor was applied to detection of HCQ in biological samples and the recoveries were 92.0–102.5%, with relative standard deviations of 1.9–4.3%. The unique physical structure of ZnO-NprGO, as well as its chemical and electrical properties, make it promising interface for use in sensors and nanoelectronic applications.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.