Development of biomaterials for bone tissue engineering based on bile acids

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2025-01-15 DOI:10.1007/s10856-024-06850-7
Yongjun Liu, Xiaojie Liu, Chang Liu, Wenan Zhang, Ting Shi, Guanying Liu
{"title":"Development of biomaterials for bone tissue engineering based on bile acids","authors":"Yongjun Liu,&nbsp;Xiaojie Liu,&nbsp;Chang Liu,&nbsp;Wenan Zhang,&nbsp;Ting Shi,&nbsp;Guanying Liu","doi":"10.1007/s10856-024-06850-7","DOIUrl":null,"url":null,"abstract":"<div><p>Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction. Certain bile acids (BAs) demonstrate significant antioxidant, anti-inflammatory, and immunosuppressive properties, and effectively promote bone and tissue regeneration. Additionally, the combination of BA molecule with other biological materials can help overcome problems associated with limited local bone regeneration and maintain a defined release state for a long time. Thus in this review, we focus on the role and the mechanism of bile acids in bone healing under different conditions, highlighting their unique properties and applications in gel fabrication, microencapsulation, and nanotechnology. These advancements serve as a basis for the advancement of biomaterials derived from BAs, specifically for the purpose of bone reconstruction.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06850-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06850-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction. Certain bile acids (BAs) demonstrate significant antioxidant, anti-inflammatory, and immunosuppressive properties, and effectively promote bone and tissue regeneration. Additionally, the combination of BA molecule with other biological materials can help overcome problems associated with limited local bone regeneration and maintain a defined release state for a long time. Thus in this review, we focus on the role and the mechanism of bile acids in bone healing under different conditions, highlighting their unique properties and applications in gel fabrication, microencapsulation, and nanotechnology. These advancements serve as a basis for the advancement of biomaterials derived from BAs, specifically for the purpose of bone reconstruction.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胆汁酸类骨组织工程生物材料的研究进展。
疾病和伤害会导致严重的骨质流失,导致医疗费用增加,工作效率下降,生活质量下降。由于供体有限,骨组织工程(BTE)作为自体和异体移植的替代方法越来越受到关注。生物材料是一种很有前途的骨再生策略,其设计应考虑骨组织工程中的三个关键过程:成骨、骨传导和骨诱导。某些胆汁酸(BAs)显示出显著的抗氧化、抗炎和免疫抑制特性,并有效地促进骨和组织再生。此外,BA分子与其他生物材料的结合可以帮助克服局部骨再生受限的问题,并长期保持一定的释放状态。因此,本文将重点介绍胆汁酸在不同条件下骨愈合中的作用和机制,重点介绍胆汁酸的独特性质及其在凝胶制备、微胶囊化和纳米技术方面的应用。这些进展为BAs衍生生物材料的发展奠定了基础,特别是用于骨重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Anodized Ti6Al4V-ELI, electroplated with copper is bactericidal against Staphylococcus aureus and enhances macrophage phagocytosis. Unraveling the immunomodulatory and metabolic effects of bioactive glass S53P4 on macrophages in vitro. Development of biomaterials for bone tissue engineering based on bile acids Load-bearing capacity of an experimental dental implant made of Nb-1Zr Protective effect of quercetin loaded on bifunctional periodic mesoporous organosilica against damage induced by irradiation on the male reproductive system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1