In-situ electrochemical customization of solid electrolyte interphase for fast-charging and long-cycle-life graphite anodes

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-02-01 DOI:10.1016/j.ensm.2025.104024
Shumin Wu , Yulong Zhang , Hongcheng Liang , Hongji Pan , Lu Chen , Yanxin Jiang , Hao Ding , Peng Wang , Dongni Zhao , Qing Zhang , Lin Zeng , Shiyou Li , Yiju Li
{"title":"In-situ electrochemical customization of solid electrolyte interphase for fast-charging and long-cycle-life graphite anodes","authors":"Shumin Wu ,&nbsp;Yulong Zhang ,&nbsp;Hongcheng Liang ,&nbsp;Hongji Pan ,&nbsp;Lu Chen ,&nbsp;Yanxin Jiang ,&nbsp;Hao Ding ,&nbsp;Peng Wang ,&nbsp;Dongni Zhao ,&nbsp;Qing Zhang ,&nbsp;Lin Zeng ,&nbsp;Shiyou Li ,&nbsp;Yiju Li","doi":"10.1016/j.ensm.2025.104024","DOIUrl":null,"url":null,"abstract":"<div><div>The burgeoning demand for electric vehicles and electronics underscores the imperative for fast-charging graphite (Gr)-based lithium-ion batteries (LIBs) to alleviate “range anxiety”. Overcoming the fast-charging challenge necessitates tackling diffusion issues, notably the sluggish lithium-ion (Li<sup>+</sup>) transport through solid electrolyte interphase (SEI). In response, our work proposes a charge/discharge protocol that in-situ accurately customizes an inner-LiF-rich bilayer SEI in a commercial carbonate electrolyte without introducing additional functional additives to reduce the energy barrier for Li<sup>+</sup> migration and thus enable fast-charging capabilities for Gr anode. Moreover, our study reveals strong structure-dependent properties of the SEI on the Gr, including interface affinity, Li<sup>+</sup> transport, and electrical insulation, which helps to design high-ion-conductivity and stable SEI. As a result, the in-situ electrochemical customization of the inner-LiF-rich bilayer SEI significantly increases the cycling stability and rate performance of Gr anode, maintaining a high capacity retention of 70.6 % after 1000 cycles at a high rate of 5 C. Moreover, the LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622)||Gr pouch cell utilizing the new formation protocol demonstrates a 9.5 % increase in capacity retention compared to the traditional charge/discharge formation protocol. Our work provides an effective and scalable strategy for advancing fast-charging capabilities and extending the longevity of Gr-based LIBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"75 ","pages":"Article 104024"},"PeriodicalIF":20.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240582972500025X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning demand for electric vehicles and electronics underscores the imperative for fast-charging graphite (Gr)-based lithium-ion batteries (LIBs) to alleviate “range anxiety”. Overcoming the fast-charging challenge necessitates tackling diffusion issues, notably the sluggish lithium-ion (Li+) transport through solid electrolyte interphase (SEI). In response, our work proposes a charge/discharge protocol that in-situ accurately customizes an inner-LiF-rich bilayer SEI in a commercial carbonate electrolyte without introducing additional functional additives to reduce the energy barrier for Li+ migration and thus enable fast-charging capabilities for Gr anode. Moreover, our study reveals strong structure-dependent properties of the SEI on the Gr, including interface affinity, Li+ transport, and electrical insulation, which helps to design high-ion-conductivity and stable SEI. As a result, the in-situ electrochemical customization of the inner-LiF-rich bilayer SEI significantly increases the cycling stability and rate performance of Gr anode, maintaining a high capacity retention of 70.6 % after 1000 cycles at a high rate of 5 C. Moreover, the LiNi0.6Co0.2Mn0.2O2 (NCM622)||Gr pouch cell utilizing the new formation protocol demonstrates a 9.5 % increase in capacity retention compared to the traditional charge/discharge formation protocol. Our work provides an effective and scalable strategy for advancing fast-charging capabilities and extending the longevity of Gr-based LIBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速充电长循环寿命石墨阳极固态电解质界面的原位电化学定制
对电动汽车和电子产品的需求不断增长,凸显了快速充电石墨基锂离子电池(lib)缓解“里程焦虑”的必要性。克服快速充电挑战需要解决扩散问题,特别是锂离子(Li+)通过固体电解质界面(SEI)传输缓慢。作为回应,我们的工作提出了一种充电/放电方案,该方案可以在商业碳酸盐电解质中原位精确地定制内部富锂双层SEI,而无需引入额外的功能添加剂来降低Li+迁移的能量屏障,从而实现Gr阳极的快速充电能力。此外,我们的研究揭示了SEI在Gr上具有很强的结构依赖性,包括界面亲和性、Li+输运性和电绝缘性,这有助于设计高离子电导率和稳定的SEI。结果表明,原位电化学定制的内部富liff双层SEI显著提高了Gr阳极的循环稳定性和速率性能,在5℃的高速率下,在1000次循环后保持70.6%的高容量保留率。此外,采用新形成方案的LiNi0.6Co0.2Mn0.2O2 (NCM622)||Gr袋电池的容量保留率比传统的充放电形成方案提高了9.5%。我们的工作为推进快速充电能力和延长基于gr的lib的使用寿命提供了一种有效且可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Spatially-Resolved Degradation in High-Voltage Single-Crystal Cathodes and its Mitigation via Surface Structural Pillar and Kinetic Promoter Prussian Blue Analogues as Cathode Materials for Nonaqueous Sodium-Ion Batteries: Fundamentals, Mechanisms, and Performance Hydrogel with High Ionic Conductivity and Low Water Activity Enables Stable Zn//LiMn2O4 Microbatteries Expanding Electrolyte Window Enables High Voltage Aqueous Batteries: Challenges and Strategies Sustainable Transformation of Rare Earth Metals Value Chain for Dual-Use Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1