Julie Noguerol, Karl Laviolette, Margot Zahm, Adeline Chaubet, Ambrine Sahal, Claire Détraves, Romain Torres, Clothilde Demont, Véronique Adoue, Carine Joffre, Florence Cammas, Joost PM van Meerwijk, Olivier P. Joffre
{"title":"Heterochromatic gene silencing controls CD4+ T cell susceptibility to regulatory T cell-mediated suppression in a murine allograft model","authors":"Julie Noguerol, Karl Laviolette, Margot Zahm, Adeline Chaubet, Ambrine Sahal, Claire Détraves, Romain Torres, Clothilde Demont, Véronique Adoue, Carine Joffre, Florence Cammas, Joost PM van Meerwijk, Olivier P. Joffre","doi":"10.1038/s41467-025-55848-4","DOIUrl":null,"url":null,"abstract":"<p>Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4<sup>+</sup> T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown. Here we show, using a murine bone marrow allograft model in which graft rejection is coordinated by CD4<sup>+</sup> T cells and can be inhibited by Treg, that Treg-mediated T cell suppression involves Heterochromatin Protein 1 α (HP1α)-dependent gene silencing. Unexpectedly, our screen also reveals that T cells deficient for HP1γ or the methyltransferase SUV39H1 are better repressed by Treg than their wild-type counterparts. Mechanistically, our transcriptional and epigenetic profiling identifies HP1γ as a negative regulator of a gene network functionally associated with T-cell exhaustion, including those encoding the inhibitory receptors PD-1 and LAG-3. In conclusion, we identify HP1 variants as rheostats that finely tune the balance between tolerance and immunity. While HP1α converts immunosuppressive signals into heterochromatin-dependent gene silencing mechanisms, HP1γ adjusts Tconv sensitivity to inhibitory environmental signals.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55848-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4+ T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown. Here we show, using a murine bone marrow allograft model in which graft rejection is coordinated by CD4+ T cells and can be inhibited by Treg, that Treg-mediated T cell suppression involves Heterochromatin Protein 1 α (HP1α)-dependent gene silencing. Unexpectedly, our screen also reveals that T cells deficient for HP1γ or the methyltransferase SUV39H1 are better repressed by Treg than their wild-type counterparts. Mechanistically, our transcriptional and epigenetic profiling identifies HP1γ as a negative regulator of a gene network functionally associated with T-cell exhaustion, including those encoding the inhibitory receptors PD-1 and LAG-3. In conclusion, we identify HP1 variants as rheostats that finely tune the balance between tolerance and immunity. While HP1α converts immunosuppressive signals into heterochromatin-dependent gene silencing mechanisms, HP1γ adjusts Tconv sensitivity to inhibitory environmental signals.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.