Facile Aqueous Route to Large-Scale Superhydrophilic TiO2-Incorporated Graphitic Carbon Nitride-Coated Ni(OH)2 and Ni2P Nano-Architecture Arrays as Efficient Electrocatalysts for Enhanced Hydrogen Production
{"title":"Facile Aqueous Route to Large-Scale Superhydrophilic TiO2-Incorporated Graphitic Carbon Nitride-Coated Ni(OH)2 and Ni2P Nano-Architecture Arrays as Efficient Electrocatalysts for Enhanced Hydrogen Production","authors":"Zahed Shami, Seyed Arad Derakhshan, Rezgar Ahmadi","doi":"10.1021/acs.langmuir.4c03236","DOIUrl":null,"url":null,"abstract":"Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO<sub>2</sub>/Ni<sub>2</sub>P coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO<sub>2</sub>/Ni<sub>2</sub>P) using a facile hydrothermal method followed by phosphorylation. In an aqueous-based route, PAN is dissolved in water in the presence of ZnCl<sub>2</sub>, followed by wet-spinning to prepare scalable PAN/ZnCl<sub>2</sub> fibers. The nitrogen-contained porous graphitic carbon fibers are prepared via the pyrolysis of PAN/ZnCl<sub>2</sub> fibers; now ZnCl<sub>2</sub> acts as a volatile porogen to form porous matrix structures. Finally, the as-prepared graphitic carbon fibers are electrochemically activated by incorporating TiO<sub>2</sub>/Ni<sub>2</sub>P active sites. The materials formed in this work show excellent electrocatalytic activity for the hydrogen evolution reaction. The as-synthesized g-C/TiO<sub>2</sub>/Ni<sub>2</sub>P catalyst shows a low overpotential, its electrocatalytic activity is improved, and its efficiency is better than that of the commercial Pt/C catalyst. At a current density of −10 mA/cm<sup>2</sup>, the g-C/TiO<sub>2</sub>/Ni<sub>2</sub>P catalyst shows an overpotential of 55 mV, while the commercial Pt/C catalyst shows an overpotential of 77 mV. Our work provides a facile aqueous scalable route with no need for noble metals that can be considered as a potential alternative for the commercial Pt/C catalyst.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"3 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03236","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO2/Ni2P coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO2/Ni2P) using a facile hydrothermal method followed by phosphorylation. In an aqueous-based route, PAN is dissolved in water in the presence of ZnCl2, followed by wet-spinning to prepare scalable PAN/ZnCl2 fibers. The nitrogen-contained porous graphitic carbon fibers are prepared via the pyrolysis of PAN/ZnCl2 fibers; now ZnCl2 acts as a volatile porogen to form porous matrix structures. Finally, the as-prepared graphitic carbon fibers are electrochemically activated by incorporating TiO2/Ni2P active sites. The materials formed in this work show excellent electrocatalytic activity for the hydrogen evolution reaction. The as-synthesized g-C/TiO2/Ni2P catalyst shows a low overpotential, its electrocatalytic activity is improved, and its efficiency is better than that of the commercial Pt/C catalyst. At a current density of −10 mA/cm2, the g-C/TiO2/Ni2P catalyst shows an overpotential of 55 mV, while the commercial Pt/C catalyst shows an overpotential of 77 mV. Our work provides a facile aqueous scalable route with no need for noble metals that can be considered as a potential alternative for the commercial Pt/C catalyst.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).