Shankarrao V. Avhad, Sugam Kumar, Ashootosh V. Ambade
{"title":"Visible Light-Responsive Composition-Dependent Morphology and Cargo Release in Mixed Micelles of Dendron Amphiphiles","authors":"Shankarrao V. Avhad, Sugam Kumar, Ashootosh V. Ambade","doi":"10.1021/acs.langmuir.4c04509","DOIUrl":null,"url":null,"abstract":"2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor–acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology. Mixed micelles display a composition-dependent morphology gradient such that the morphology changes from rice grain like to mixed to completely spherical with decreasing content of the T-D amphiphile. Complete morphology change to spherical micelles and partial reversal to ellipsoidal micelles, finally leading to ill-defined aggregates, are observed when the T-D amphiphile micelles are subjected to visible light-dark storage photoswitching cycles. Small-angle neutron scattering (SANS) analysis of 1 wt.% micellar solution in THF:water (10:90) reveals only a minor change in shape and size upon photoirradiation, and the data could be fitted to spherical or ellipsoidal model. Release of hydrophobic dye from mixed micelles is tuned by the content of the photoresponsive amphiphile. Cellular uptake and visible light-triggered release of hydrophobic drug from mixed micelles are demonstrated using MDA-MB-231 cells, suggesting their applicability for photoresponsive drug delivery.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04509","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor–acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology. Mixed micelles display a composition-dependent morphology gradient such that the morphology changes from rice grain like to mixed to completely spherical with decreasing content of the T-D amphiphile. Complete morphology change to spherical micelles and partial reversal to ellipsoidal micelles, finally leading to ill-defined aggregates, are observed when the T-D amphiphile micelles are subjected to visible light-dark storage photoswitching cycles. Small-angle neutron scattering (SANS) analysis of 1 wt.% micellar solution in THF:water (10:90) reveals only a minor change in shape and size upon photoirradiation, and the data could be fitted to spherical or ellipsoidal model. Release of hydrophobic dye from mixed micelles is tuned by the content of the photoresponsive amphiphile. Cellular uptake and visible light-triggered release of hydrophobic drug from mixed micelles are demonstrated using MDA-MB-231 cells, suggesting their applicability for photoresponsive drug delivery.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).