Akash Kumar, Jyoti S. Jha, Sushil K. Mishra, Parag Tandaiya
{"title":"Effect of notch root radius on apparent fracture toughness of Ti6Al4V alloy: experiments and simulations","authors":"Akash Kumar, Jyoti S. Jha, Sushil K. Mishra, Parag Tandaiya","doi":"10.1007/s10704-024-00838-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ti6Al4V is a widely used titanium alloy known for its excellent combination of mechanical properties, corrosion resistance, and biocompatibility. However, to ensure its effectiveness in various applications, it is important to understand the mechanical and fracture behavior of the alloy in the presence of a notch. In the present study, the effect of notch root radius on mode I fracture toughness of Ti6Al4V alloys with a nearly bimodal microstructure has been investigated. Fracture toughness tests were conducted on compact tension (CT) specimens with five different notch root radii. The experimental results demonstrate that the apparent fracture toughness, <span>\\(K_{IA}\\)</span>, increases linearly with the square root of the notch root radius. Further to elucidate the results, a 2D elastoplastic finite element analysis is performed on the CT specimens using cohesive zone model. The simulation results are in good agreement with the experimental data. The study also reveals that the apparent fracture toughness is independent of the notch root radius below a critical value, estimated to be approximately <span>\\(50\\ \\mu m\\)</span>. Finally, the scanning electron microscopy of the fracture surfaces has been examined. The micrographs reveal void coalescence and dimple regions indicating the ductile nature of the fracture process.\n</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00838-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ti6Al4V is a widely used titanium alloy known for its excellent combination of mechanical properties, corrosion resistance, and biocompatibility. However, to ensure its effectiveness in various applications, it is important to understand the mechanical and fracture behavior of the alloy in the presence of a notch. In the present study, the effect of notch root radius on mode I fracture toughness of Ti6Al4V alloys with a nearly bimodal microstructure has been investigated. Fracture toughness tests were conducted on compact tension (CT) specimens with five different notch root radii. The experimental results demonstrate that the apparent fracture toughness, \(K_{IA}\), increases linearly with the square root of the notch root radius. Further to elucidate the results, a 2D elastoplastic finite element analysis is performed on the CT specimens using cohesive zone model. The simulation results are in good agreement with the experimental data. The study also reveals that the apparent fracture toughness is independent of the notch root radius below a critical value, estimated to be approximately \(50\ \mu m\). Finally, the scanning electron microscopy of the fracture surfaces has been examined. The micrographs reveal void coalescence and dimple regions indicating the ductile nature of the fracture process.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.