Brianna Grado-White, Guglielmo Grimaldi, Matthew Headrick, Veronika E. Hubeny
{"title":"Testing holographic entropy inequalities in 2 + 1 dimensions","authors":"Brianna Grado-White, Guglielmo Grimaldi, Matthew Headrick, Veronika E. Hubeny","doi":"10.1007/JHEP01(2025)065","DOIUrl":null,"url":null,"abstract":"<p>We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with <i>π</i><sub>1</sub> = <i>ℤ</i> (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking.</p><p>A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)065.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)065","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with π1 = ℤ (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking.
A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).