Dejie Ge
(, ), Debao Ren
(, ), Yamin Duan
(, ), Xuan Luo
(, ), Shuailin He
(, ), Wenjun Qin
(, ), Fei Wang
(, ), Wen Yin
(, ), Lixin Ma
(, ), Yong Yang
(, ), Cheng Zhang
(, )
{"title":"Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy","authors":"Dejie Ge \n (, ), Debao Ren \n (, ), Yamin Duan \n (, ), Xuan Luo \n (, ), Shuailin He \n (, ), Wenjun Qin \n (, ), Fei Wang \n (, ), Wen Yin \n (, ), Lixin Ma \n (, ), Yong Yang \n (, ), Cheng Zhang \n (, )","doi":"10.1007/s40843-024-3177-5","DOIUrl":null,"url":null,"abstract":"<div><p>The inherent tumor microenvironment (TME) of hypoxia and high glutathione (GSH) hinders the production of reactive oxygen species (ROS), yet which are crucial roles to make the oxygen-independent chemodynamic therapy (CDT) outstanding. Herein, we constructed hyaluronic acid (HA)-modified and peroxymonosulfate (PMS)-loaded hollow manganese dioxide (HMn) nanoparticles for not only TME-response drug release but also the distinct ROS donors to strengthen CDT. Upon enriched in the tumor site, the prepared nanotheranostic agent (HA@HMn/PMS) depleted local GSH to reduce MnO<sub>2</sub> to Mn<sup>2+</sup>, followed by generating •OH and •SO<sub>4</sub><sup>−</sup> through Fenton-like reaction and activation of PMS, respectively. The bring in of •SO<sub>4</sub><sup>−</sup>, a rare radical possessing exceptional oxidizing ability and oxygen-independent property, breaks the limitations of traditional ROS and causes serious damage to tumor cells. In a xenograft mouse tumor model, detailed studies demonstrated that HA@HMn/PMS can significantly inhibit tumor growth. This work inspires the enormous potential of CDT in investigating the application of multifunctional nanosystems by combining the consumption of GSH and the synergistic effect of multiple radicals in oncotherapy.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"292 - 302"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3177-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent tumor microenvironment (TME) of hypoxia and high glutathione (GSH) hinders the production of reactive oxygen species (ROS), yet which are crucial roles to make the oxygen-independent chemodynamic therapy (CDT) outstanding. Herein, we constructed hyaluronic acid (HA)-modified and peroxymonosulfate (PMS)-loaded hollow manganese dioxide (HMn) nanoparticles for not only TME-response drug release but also the distinct ROS donors to strengthen CDT. Upon enriched in the tumor site, the prepared nanotheranostic agent (HA@HMn/PMS) depleted local GSH to reduce MnO2 to Mn2+, followed by generating •OH and •SO4− through Fenton-like reaction and activation of PMS, respectively. The bring in of •SO4−, a rare radical possessing exceptional oxidizing ability and oxygen-independent property, breaks the limitations of traditional ROS and causes serious damage to tumor cells. In a xenograft mouse tumor model, detailed studies demonstrated that HA@HMn/PMS can significantly inhibit tumor growth. This work inspires the enormous potential of CDT in investigating the application of multifunctional nanosystems by combining the consumption of GSH and the synergistic effect of multiple radicals in oncotherapy.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.