{"title":"Prediction of Proteolysis-Targeting Chimeras Retention Time Using XGBoost Model Incorporated with Chromatographic Conditions.","authors":"Xinhao Qu, Chen Jiang, Mengyi Shan, Wenhao Ke, Jing Chen, Qiming Zhao, Youhong Hu, Jia Liu, Lu-Ping Qin, Gang Cheng","doi":"10.1021/acs.jcim.4c01732","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that target undruggable proteins, enhance selectivity and prevent target accumulation through catalytic activity. The unique structure of PROTACs presents challenges in structural identification and drug design. Liquid chromatography (LC), combined with mass spectrometry (MS), enhances compound annotation by providing essential retention time (RT) data, especially when MS alone is insufficient. However, predicting RT for PROTACs remains challenging. To address this, we compiled the PROTAC-RT data set from literature and evaluated the performance of four machine learning algorithms─extreme gradient boosting (XGBoost), random forest (RF), K-nearest neighbor (KNN) and support vector machines (SVM)─and a deep learning model, fully connected neural network (FCNN), using 24 molecular fingerprints and descriptors. Through screening combinations of molecular fingerprints, descriptors and chromatographic condition descriptors (CCs), we developed an optimized XGBoost model (XGBoost + moe206+Path + Charge + CCs) that achieved an <i>R</i><sup>2</sup> of 0.958 ± 0.027 and an RMSE of 0.934 ± 0.412. After hyperparameter tuning, the model's <i>R</i><sup>2</sup> improved to 0.963 ± 0.023, with an RMSE of 0.896 ± 0.374. The model showed strong predictive accuracy under new chromatographic separation conditions and was validated using six experimentally determined compounds. SHapley Additive exPlanations (SHAP) not only highlights the advantages of XGBoost but also emphasizes the importance of CCs and molecular features, such as bond variability, van der Waals surface area, and atomic charge states. The optimized XGBoost model combines moe206, path, charge descriptors, and CCs, providing a fast and precise method for predicting the RT of PROTACs compounds, thus facilitating their annotation.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"613-625"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01732","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that target undruggable proteins, enhance selectivity and prevent target accumulation through catalytic activity. The unique structure of PROTACs presents challenges in structural identification and drug design. Liquid chromatography (LC), combined with mass spectrometry (MS), enhances compound annotation by providing essential retention time (RT) data, especially when MS alone is insufficient. However, predicting RT for PROTACs remains challenging. To address this, we compiled the PROTAC-RT data set from literature and evaluated the performance of four machine learning algorithms─extreme gradient boosting (XGBoost), random forest (RF), K-nearest neighbor (KNN) and support vector machines (SVM)─and a deep learning model, fully connected neural network (FCNN), using 24 molecular fingerprints and descriptors. Through screening combinations of molecular fingerprints, descriptors and chromatographic condition descriptors (CCs), we developed an optimized XGBoost model (XGBoost + moe206+Path + Charge + CCs) that achieved an R2 of 0.958 ± 0.027 and an RMSE of 0.934 ± 0.412. After hyperparameter tuning, the model's R2 improved to 0.963 ± 0.023, with an RMSE of 0.896 ± 0.374. The model showed strong predictive accuracy under new chromatographic separation conditions and was validated using six experimentally determined compounds. SHapley Additive exPlanations (SHAP) not only highlights the advantages of XGBoost but also emphasizes the importance of CCs and molecular features, such as bond variability, van der Waals surface area, and atomic charge states. The optimized XGBoost model combines moe206, path, charge descriptors, and CCs, providing a fast and precise method for predicting the RT of PROTACs compounds, thus facilitating their annotation.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.