{"title":"Detection of the SARS-CoV-2 nucleoprotein by electrochemical biosensor based on molecularly imprinted polypyrrole formed on self-assembled monolayer.","authors":"Viktorija Liustrovaite, Vilma Ratautaite, Almira Ramanaviciene, Arunas Ramanavicius","doi":"10.1016/j.bios.2024.117092","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers. Removing the rN protein template from the MIP layer increased electron transfer and decreased impedance, indicating the specificity of molecular imprinting. The electrochemical biosensor with a Ppy-based MIP exhibited higher sensitivity than the NIP counterpart, demonstrating its potential for selective rN protein detection. The limit of detection 0.4 nM and 0.2 nM and the limit of quantification 1.3 nM and 0.66 nM values obtained through SWV and EIS, respectively, highlight the biosensor's ability to detect low target protein concentrations. The specificity test confirmed minimal nonspecific binding, reinforcing the reliability of the novel electrochemical sensor with a Ppy-based MIP.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"272 ","pages":"117092"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.117092","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers. Removing the rN protein template from the MIP layer increased electron transfer and decreased impedance, indicating the specificity of molecular imprinting. The electrochemical biosensor with a Ppy-based MIP exhibited higher sensitivity than the NIP counterpart, demonstrating its potential for selective rN protein detection. The limit of detection 0.4 nM and 0.2 nM and the limit of quantification 1.3 nM and 0.66 nM values obtained through SWV and EIS, respectively, highlight the biosensor's ability to detect low target protein concentrations. The specificity test confirmed minimal nonspecific binding, reinforcing the reliability of the novel electrochemical sensor with a Ppy-based MIP.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.