Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-04-01 Epub Date: 2025-01-09 DOI:10.1002/marc.202400936
Yusuke Kanki, Koki Miyahara, Shota Yamamoto, Keiji Ogawa, Sayuki Kanemitsu, Rika Sakai, Hikaru Amo, Kenta Morita, Takashi Nishino, Tatsuo Maruyama
{"title":"Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.","authors":"Yusuke Kanki, Koki Miyahara, Shota Yamamoto, Keiji Ogawa, Sayuki Kanemitsu, Rika Sakai, Hikaru Amo, Kenta Morita, Takashi Nishino, Tatsuo Maruyama","doi":"10.1002/marc.202400936","DOIUrl":null,"url":null,"abstract":"<p><p>Here, \"direct click bonding\" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups. The click bonding reaction proceeds at ambient temperature in water, an organic solvent, air, and vacuum without a catalyst or a byproduct. The bonding strength is kept more than 2 years. The click bonding works for different types of substrate materials as long as alkyne and azide groups are displayed on their surfaces. The X-ray photoelectron spectroscopy (XPS) measurements provide an evidence that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between the solid surfaces through the click bonding.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400936"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400936","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups. The click bonding reaction proceeds at ambient temperature in water, an organic solvent, air, and vacuum without a catalyst or a byproduct. The bonding strength is kept more than 2 years. The click bonding works for different types of substrate materials as long as alkyne and azide groups are displayed on their surfaces. The X-ray photoelectron spectroscopy (XPS) measurements provide an evidence that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between the solid surfaces through the click bonding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无催化剂Huisgen 1,3-偶极环加成的不同固体材料直接点击键合。
本文提出固体材料的“直接点击键合”,即固体表面在不使用任何粘合剂的情况下,通过形成共价键进行直接键合。本研究表明,无cu Huisgen 1,3-偶极环加成反应在含有环辛和叠氮基团的固体表面之间进行,并作为宏观反应实现了不同固体材料之间的强键合。所得到的键合强度足够高,可用于实际应用,并且强度可通过环辛基基团的表面密度来控制。键合反应在水、有机溶剂、空气和真空环境下进行,没有催化剂或副产品。粘接强度保持2年以上。只要在不同类型的衬底材料表面显示炔基和叠氮基,点击键就可以工作。x射线光电子能谱(XPS)测量结果表明,固体表面之间通过点击键发生了无cu Huisgen 1,3-偶极环加成反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Multicolor Mechanochromic Polymer Blends That Can Distinguish between Tensile-Stress States. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1