Succinylome Profiling the Function and Distribution of Lysine Succinylation in Saccharopolyspora erythraea.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2025-01-08 DOI:10.1007/s12010-024-05176-y
Xiang Ke, Xing Jiang, Muhammad Hammad Hussain, Xiwei Tian, Ju Chu
{"title":"Succinylome Profiling the Function and Distribution of Lysine Succinylation in Saccharopolyspora erythraea.","authors":"Xiang Ke, Xing Jiang, Muhammad Hammad Hussain, Xiwei Tian, Ju Chu","doi":"10.1007/s12010-024-05176-y","DOIUrl":null,"url":null,"abstract":"<p><p>As a novel protein post-translational modification, lysine succinylation is widely involved in metabolism regulation. To describe succinylated lysine's physiological functions and distribution patterns in Saccharopolyspora erythraea, a large and global protein succinylome was identified in a hypersuccinylated strain E3ΔsucC, using high-resolution 4D label-free mass spectrometry. Bioinformatic analysis was conducted to examine the succinylated proteins further in this study. The results showed that succinylated proteins were identified to be predominantly involved in protein synthesis, central carbon and nitrogen metabolism, and secondary metabolism. The process of lysine succinylation was found intricately regulated by a delicate interplay of factors, such as the relative abundance of lysine within the protein, the strategic positioning of polar amino acids flanking the succinylated sites, and the degree to which lysine residues are exposed to the solvent, thereby shaping the landscape of post-translational modifications. This systematic analysis has represented the global analysis of lysine succinylation in S. erythraea and has provided an important resource for exploring the function and regulation of lysine succinylation in S. erythraea and likely in all actinomycetes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05176-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a novel protein post-translational modification, lysine succinylation is widely involved in metabolism regulation. To describe succinylated lysine's physiological functions and distribution patterns in Saccharopolyspora erythraea, a large and global protein succinylome was identified in a hypersuccinylated strain E3ΔsucC, using high-resolution 4D label-free mass spectrometry. Bioinformatic analysis was conducted to examine the succinylated proteins further in this study. The results showed that succinylated proteins were identified to be predominantly involved in protein synthesis, central carbon and nitrogen metabolism, and secondary metabolism. The process of lysine succinylation was found intricately regulated by a delicate interplay of factors, such as the relative abundance of lysine within the protein, the strategic positioning of polar amino acids flanking the succinylated sites, and the degree to which lysine residues are exposed to the solvent, thereby shaping the landscape of post-translational modifications. This systematic analysis has represented the global analysis of lysine succinylation in S. erythraea and has provided an important resource for exploring the function and regulation of lysine succinylation in S. erythraea and likely in all actinomycetes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖多孢子菌琥珀酰化的功能和分布。
赖氨酸琥珀酰化作为一种新型的蛋白质翻译后修饰,广泛参与蛋白质代谢调节。为了描述琥珀化赖氨酸在赤藓糖多孢子菌中的生理功能和分布规律,我们利用高分辨率4D无标记质谱技术,在高琥珀化菌株E3ΔsucC中鉴定了一个大的全局蛋白琥珀化酶。本研究对琥珀化蛋白进行了进一步的生物信息学分析。结果表明,琥珀酰化蛋白主要参与蛋白质合成、中心碳氮代谢和次生代谢。研究发现,赖氨酸琥珀酰化过程受到多种因素的微妙相互作用的复杂调控,如蛋白质中赖氨酸的相对丰度、琥珀酰化位点两侧极性氨基酸的战略性定位以及赖氨酸残基暴露于溶剂的程度,从而塑造了翻译后修饰的景观。该系统分析代表了全球对红葡萄球菌中赖氨酸琥珀酰化的分析,为探索红葡萄球菌和所有放线菌中赖氨酸琥珀酰化的功能和调控提供了重要资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red. Identification of PIF1 as a Ferroptosis-Related Prognostic Biomarker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment. Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1