Youngtaek Hong, Seri Jeong, Min-Jeong Park, Wonkeun Song, Nuri Lee
{"title":"Application of Pathomic Features for Differentiating Dysplastic Cells in Patients with Myelodysplastic Syndrome.","authors":"Youngtaek Hong, Seri Jeong, Min-Jeong Park, Wonkeun Song, Nuri Lee","doi":"10.3390/bioengineering11121230","DOIUrl":null,"url":null,"abstract":"<p><p>Myelodysplastic syndromes (MDSs) are a group of hematologic neoplasms accompanied by dysplasia of bone marrow (BM) hematopoietic cells with cytopenia. Recently, digitalized pathology and pathomics using computerized feature analysis have been actively researched for classifying and predicting prognosis in various tumors of hematopoietic tissues. This study analyzed the pathomic features of hematopoietic cells in BM aspiration smears of patients with MDS according to each hematopoietic cell lineage and dysplasia. We included 24 patients with an MDS and 21 with normal BM. The 12,360 hematopoietic cells utilized were to be classified into seven types: normal erythrocytes, normal granulocytes, normal megakaryocytes, dysplastic erythrocytes, dysplastic granulocytes, dysplastic megakaryocytes, and others. Four hundred seventy-six pathomic features quantifying cell intensity, shape, and texture were extracted from each segmented cell. After comparing the combination of feature selection and machine learning classifier methods using 5-fold cross-validation area under the receiver operating characteristic curve (AUROC), the quadratic discriminant analysis (QDA) with gradient boosting decision tree (AUROC = 0.63) and QDA with eXtreme gradient boosting (XGB) (AUROC = 0.64) showed a high AUROC combination. Through a feature selection process, 30 characteristics were further analyzed. Dysplastic erythrocytes and granulocytes showed lower median values on heatmap analysis compared to that of normal erythrocytes and granulocytes. The data suggest that pathomic features could be applied to cell differentiation in hematologic malignancies. It could be used as a new biomarker with an auxiliary role for more accurate diagnosis. Further studies including prediction survival and prognosis with larger cohort of patients are needed.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Myelodysplastic syndromes (MDSs) are a group of hematologic neoplasms accompanied by dysplasia of bone marrow (BM) hematopoietic cells with cytopenia. Recently, digitalized pathology and pathomics using computerized feature analysis have been actively researched for classifying and predicting prognosis in various tumors of hematopoietic tissues. This study analyzed the pathomic features of hematopoietic cells in BM aspiration smears of patients with MDS according to each hematopoietic cell lineage and dysplasia. We included 24 patients with an MDS and 21 with normal BM. The 12,360 hematopoietic cells utilized were to be classified into seven types: normal erythrocytes, normal granulocytes, normal megakaryocytes, dysplastic erythrocytes, dysplastic granulocytes, dysplastic megakaryocytes, and others. Four hundred seventy-six pathomic features quantifying cell intensity, shape, and texture were extracted from each segmented cell. After comparing the combination of feature selection and machine learning classifier methods using 5-fold cross-validation area under the receiver operating characteristic curve (AUROC), the quadratic discriminant analysis (QDA) with gradient boosting decision tree (AUROC = 0.63) and QDA with eXtreme gradient boosting (XGB) (AUROC = 0.64) showed a high AUROC combination. Through a feature selection process, 30 characteristics were further analyzed. Dysplastic erythrocytes and granulocytes showed lower median values on heatmap analysis compared to that of normal erythrocytes and granulocytes. The data suggest that pathomic features could be applied to cell differentiation in hematologic malignancies. It could be used as a new biomarker with an auxiliary role for more accurate diagnosis. Further studies including prediction survival and prognosis with larger cohort of patients are needed.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering