{"title":"Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.","authors":"Charles Millard, Mark Chiew","doi":"10.3390/bioengineering11121305","DOIUrl":null,"url":null,"abstract":"<p><p>Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term upon inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data are available for training. Both proposed methods are applicable to any network architecture, are straightforward to implement, and have a similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121305","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term upon inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data are available for training. Both proposed methods are applicable to any network architecture, are straightforward to implement, and have a similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering