{"title":"Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence.","authors":"Rina Aoyama, Masaaki Komatsu, Naoaki Harada, Reina Komatsu, Akira Sakai, Katsuji Takeda, Naoki Teraya, Ken Asada, Syuzo Kaneko, Kazuki Iwamoto, Ryu Matsuoka, Akihiko Sekizawa, Ryuji Hamamoto","doi":"10.3390/bioengineering11121256","DOIUrl":null,"url":null,"abstract":"<p><p>The three-vessel view (3VV) is a standardized transverse scanning plane used in fetal cardiac ultrasound screening to measure the absolute and relative diameters of the pulmonary artery (PA), ascending aorta (Ao), and superior vena cava, as required. The PA/Ao ratio is used to support the diagnosis of congenital heart disease (CHD). However, vascular diameters are measured manually by examiners, which causes intra- and interobserver variability in clinical practice. In the present study, we aimed to develop an artificial intelligence-based method for the standardized and quantitative evaluation of 3VV. In total, 315 cases and 20 examiners were included in this study. We used the object-detection software YOLOv7 for the automated extraction of 3VV images and compared three segmentation algorithms: DeepLabv3+, UNet3+, and SegFormer. Using the PA/Ao ratios based on vascular segmentation, YOLOv7 plus UNet3+ yielded the most appropriate classification for normal fetuses and those with CHD. Furthermore, YOLOv7 plus UNet3+ achieved an arithmetic mean value of 0.883 for the area under the receiver operating characteristic curve, which was higher than 0.749 for residents and 0.808 for fellows. Our automated method may support unskilled examiners in performing quantitative and objective assessments of 3VV images during fetal cardiac ultrasound screening.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121256","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The three-vessel view (3VV) is a standardized transverse scanning plane used in fetal cardiac ultrasound screening to measure the absolute and relative diameters of the pulmonary artery (PA), ascending aorta (Ao), and superior vena cava, as required. The PA/Ao ratio is used to support the diagnosis of congenital heart disease (CHD). However, vascular diameters are measured manually by examiners, which causes intra- and interobserver variability in clinical practice. In the present study, we aimed to develop an artificial intelligence-based method for the standardized and quantitative evaluation of 3VV. In total, 315 cases and 20 examiners were included in this study. We used the object-detection software YOLOv7 for the automated extraction of 3VV images and compared three segmentation algorithms: DeepLabv3+, UNet3+, and SegFormer. Using the PA/Ao ratios based on vascular segmentation, YOLOv7 plus UNet3+ yielded the most appropriate classification for normal fetuses and those with CHD. Furthermore, YOLOv7 plus UNet3+ achieved an arithmetic mean value of 0.883 for the area under the receiver operating characteristic curve, which was higher than 0.749 for residents and 0.808 for fellows. Our automated method may support unskilled examiners in performing quantitative and objective assessments of 3VV images during fetal cardiac ultrasound screening.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering