Sonja C S Simon, Igor Bibi, Daniel Schaffert, Johannes Benecke, Niklas Martin, Jan Leipe, Cristian Vladescu, Victor Olsavszky
{"title":"AutoML-Driven Insights into Patient Outcomes and Emergency Care During Romania's First Wave of COVID-19.","authors":"Sonja C S Simon, Igor Bibi, Daniel Schaffert, Johannes Benecke, Niklas Martin, Jan Leipe, Cristian Vladescu, Victor Olsavszky","doi":"10.3390/bioengineering11121272","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic severely impacted healthcare systems, affecting patient outcomes and resource allocation. This study applied automated machine learning (AutoML) to analyze key health outputs, such as discharge conditions, mortality, and COVID-19 cases, with the goal of improving responses to future crises.</p><p><strong>Methods: </strong>AutoML was used to train and validate models on an ICD-10 dataset covering the first wave of COVID-19 in Romania (January-September 2020).</p><p><strong>Results: </strong>For discharge outcomes, Light Gradient Boosted models achieved an F1 score of 0.9644, while for mortality 0.7545 was reached. A Generalized Linear Model blender achieved an F1 score of 0.9884 for \"acute or emergency\" cases, and an average blender reached 0.923 for COVID-19 cases. Older age, specific hospitals, and oncology wards were less associated with improved recovery rates, while mortality was linked to abnormal lab results and cardiovascular/respiratory diseases. Patients admitted without referral, or patients in hospitals in the central region and the capital region of Romania were more likely to be acute cases. Finally, counties such as Argeş (South-Muntenia) and Brașov (Center) showed higher COVID-19 infection rates regardless of age.</p><p><strong>Conclusions: </strong>AutoML provided valuable insights into patient outcomes, highlighting variations in care and the need for targeted health strategies for both COVID-19 and other health challenges.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121272","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The COVID-19 pandemic severely impacted healthcare systems, affecting patient outcomes and resource allocation. This study applied automated machine learning (AutoML) to analyze key health outputs, such as discharge conditions, mortality, and COVID-19 cases, with the goal of improving responses to future crises.
Methods: AutoML was used to train and validate models on an ICD-10 dataset covering the first wave of COVID-19 in Romania (January-September 2020).
Results: For discharge outcomes, Light Gradient Boosted models achieved an F1 score of 0.9644, while for mortality 0.7545 was reached. A Generalized Linear Model blender achieved an F1 score of 0.9884 for "acute or emergency" cases, and an average blender reached 0.923 for COVID-19 cases. Older age, specific hospitals, and oncology wards were less associated with improved recovery rates, while mortality was linked to abnormal lab results and cardiovascular/respiratory diseases. Patients admitted without referral, or patients in hospitals in the central region and the capital region of Romania were more likely to be acute cases. Finally, counties such as Argeş (South-Muntenia) and Brașov (Center) showed higher COVID-19 infection rates regardless of age.
Conclusions: AutoML provided valuable insights into patient outcomes, highlighting variations in care and the need for targeted health strategies for both COVID-19 and other health challenges.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering