{"title":"The Accuracy of Algorithms Used by Artificial Intelligence in Cephalometric Points Detection: A Systematic Review.","authors":"Júlia Ribas-Sabartés, Meritxell Sánchez-Molins, Nuno Gustavo d'Oliveira","doi":"10.3390/bioengineering11121286","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence in orthodontics is emerging as a tool for localizing cephalometric points in two-dimensional X-rays. AI systems are being evaluated for their accuracy and efficiency compared to conventional methods performed by professionals. The main objective of this study is to identify the artificial intelligence algorithms that yield the best results for cephalometric landmark localization, along with their learning system. A literature search was conducted across PubMed-MEDLINE, Cochrane, Scopus, IEEE Xplore, and Web of Science. Observational and experimental studies from 2013 to 2023 assessing the detection of at least 13 cephalometric landmarks in two-dimensional radiographs were included. Studies requiring advanced computer engineering knowledge or involving patients with anomalies, syndromes, or orthodontic appliances, were excluded. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Newcastle-Ottawa Scale (NOS) tools. Of 385 references, 13 studies met the inclusion criteria (1 diagnostic accuracy study and 12 retrospective cohorts). Six were high-risk, and seven were low-risk. Convolutional neural networks (CNN)-based AI algorithms showed point localization accuracy ranging from 64.3 to 97.3%, with a mean error of 1.04 mm ± 0.89 to 3.40 mm ± 1.57, within the clinical range of 2 mm. YOLOv3 demonstrated improvements over its earlier version. CNN have proven to be the most effective AI system for detecting cephalometric points in radiographic images. Although CNN-based algorithms generate results very quickly and reproducibly, they still do not achieve the accuracy of orthodontists.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121286","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of artificial intelligence in orthodontics is emerging as a tool for localizing cephalometric points in two-dimensional X-rays. AI systems are being evaluated for their accuracy and efficiency compared to conventional methods performed by professionals. The main objective of this study is to identify the artificial intelligence algorithms that yield the best results for cephalometric landmark localization, along with their learning system. A literature search was conducted across PubMed-MEDLINE, Cochrane, Scopus, IEEE Xplore, and Web of Science. Observational and experimental studies from 2013 to 2023 assessing the detection of at least 13 cephalometric landmarks in two-dimensional radiographs were included. Studies requiring advanced computer engineering knowledge or involving patients with anomalies, syndromes, or orthodontic appliances, were excluded. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Newcastle-Ottawa Scale (NOS) tools. Of 385 references, 13 studies met the inclusion criteria (1 diagnostic accuracy study and 12 retrospective cohorts). Six were high-risk, and seven were low-risk. Convolutional neural networks (CNN)-based AI algorithms showed point localization accuracy ranging from 64.3 to 97.3%, with a mean error of 1.04 mm ± 0.89 to 3.40 mm ± 1.57, within the clinical range of 2 mm. YOLOv3 demonstrated improvements over its earlier version. CNN have proven to be the most effective AI system for detecting cephalometric points in radiographic images. Although CNN-based algorithms generate results very quickly and reproducibly, they still do not achieve the accuracy of orthodontists.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering