{"title":"Assessment of Muscle Synergies in Chronic Ankle Instability Patients During Unanticipated and Anticipated Landing.","authors":"Zhifeng Zhou, Datao Xu, Meizi Wang, Tianle Jie, Julien S Baker, Huiyu Zhou, Yaodong Gu","doi":"10.3390/bioengineering11121237","DOIUrl":null,"url":null,"abstract":"<p><p>Ankle sprains are a common injury among athletes and the general population, with chronic ankle instability (CAI) being a frequent complication. CAI patients often display altered neuromuscular control adaptations. This study analyzed muscle synergy patterns in 20 CAI patients during anticipated and unanticipated landing tasks to understand their neuromuscular adaptation strategies. Using Nesterov non-negative matrix factorization and K-means clustering, the study identified distinct muscle activation patterns. Results indicated that during unanticipated landings, the gluteus maximus and vastus lateralis showed increased activation weight, while the medial gastrocnemius was more active in anticipated landings. This study highlights that CAI patients display unique muscle synergy patterns during unanticipated landings, relying more on proximal muscles such as the gluteus maximus and vastus lateralis. This adaptation reflects the proximal muscle strategy to enhance stability and compensate for impaired ankle function in unpredictable situations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121237","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ankle sprains are a common injury among athletes and the general population, with chronic ankle instability (CAI) being a frequent complication. CAI patients often display altered neuromuscular control adaptations. This study analyzed muscle synergy patterns in 20 CAI patients during anticipated and unanticipated landing tasks to understand their neuromuscular adaptation strategies. Using Nesterov non-negative matrix factorization and K-means clustering, the study identified distinct muscle activation patterns. Results indicated that during unanticipated landings, the gluteus maximus and vastus lateralis showed increased activation weight, while the medial gastrocnemius was more active in anticipated landings. This study highlights that CAI patients display unique muscle synergy patterns during unanticipated landings, relying more on proximal muscles such as the gluteus maximus and vastus lateralis. This adaptation reflects the proximal muscle strategy to enhance stability and compensate for impaired ankle function in unpredictable situations.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering