Yuyu Ma, Xiaoyu Liang, Huanqi Wu, Hao Lu, Yong Li, Changzeng Liu, Yang Gao, Min Xiang, Dexin Yu, Xiaolin Ning
{"title":"Cost-Reference Particle Filter-Based Method for Constructing Effective Brain Networks: Application in Optically Pumped Magnetometer Magnetoencephalography.","authors":"Yuyu Ma, Xiaoyu Liang, Huanqi Wu, Hao Lu, Yong Li, Changzeng Liu, Yang Gao, Min Xiang, Dexin Yu, Xiaolin Ning","doi":"10.3390/bioengineering11121258","DOIUrl":null,"url":null,"abstract":"<p><p>Optically pumped magnetometer magnetoencephalography (OPM-MEG) represents a novel method for recording neural signals in the brain, offering the potential to measure critical neuroimaging characteristics such as effective brain networks. Effective brain networks describe the causal relationships and information flow between brain regions. In constructing effective brain networks using Granger causality, the noise in the multivariate autoregressive model (MVAR) is typically assumed to follow a Gaussian distribution. However, in experimental measurements, the statistical characteristics of noise are difficult to ascertain. In this paper, a Granger causality method based on a cost-reference particle filter (CRPF) is proposed for constructing effective brain networks under unknown noise conditions. Simulation results show that the average estimation errors of the MVAR model coefficients using the CRPF method are reduced by 53.4% and 82.4% compared to the Kalman filter (KF) and maximum correntropy filter (MCF) under Gaussian noise, respectively. The CRPF method reduces the average estimation errors by 88.1% and 85.8% compared to the MCF under alpha-stable distribution noise and the KF method under pink noise conditions, respectively. In an experiment, the CRPF method recoversthe latent characteristics of effective connectivity of benchmark somatosensory stimulation data in rats, human finger movement, and auditory oddball paradigms measured using OPM-MEG, which is in excellent agreement with known physiology. The simulation and experimental results demonstrate the effectiveness of the proposed algorithm and OPM-MEG for measuring effective brain networks.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optically pumped magnetometer magnetoencephalography (OPM-MEG) represents a novel method for recording neural signals in the brain, offering the potential to measure critical neuroimaging characteristics such as effective brain networks. Effective brain networks describe the causal relationships and information flow between brain regions. In constructing effective brain networks using Granger causality, the noise in the multivariate autoregressive model (MVAR) is typically assumed to follow a Gaussian distribution. However, in experimental measurements, the statistical characteristics of noise are difficult to ascertain. In this paper, a Granger causality method based on a cost-reference particle filter (CRPF) is proposed for constructing effective brain networks under unknown noise conditions. Simulation results show that the average estimation errors of the MVAR model coefficients using the CRPF method are reduced by 53.4% and 82.4% compared to the Kalman filter (KF) and maximum correntropy filter (MCF) under Gaussian noise, respectively. The CRPF method reduces the average estimation errors by 88.1% and 85.8% compared to the MCF under alpha-stable distribution noise and the KF method under pink noise conditions, respectively. In an experiment, the CRPF method recoversthe latent characteristics of effective connectivity of benchmark somatosensory stimulation data in rats, human finger movement, and auditory oddball paradigms measured using OPM-MEG, which is in excellent agreement with known physiology. The simulation and experimental results demonstrate the effectiveness of the proposed algorithm and OPM-MEG for measuring effective brain networks.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering