Impact of Deep Learning-Based Image Reconstruction on Tumor Visibility and Diagnostic Confidence in Computed Tomography.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-18 DOI:10.3390/bioengineering11121285
Marie Bertl, Friedrich-Georg Hahne, Stephanie Gräger, Andreas Heinrich
{"title":"Impact of Deep Learning-Based Image Reconstruction on Tumor Visibility and Diagnostic Confidence in Computed Tomography.","authors":"Marie Bertl, Friedrich-Georg Hahne, Stephanie Gräger, Andreas Heinrich","doi":"10.3390/bioengineering11121285","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning image reconstruction (DLIR) has shown potential to enhance computed tomography (CT) image quality, but its impact on tumor visibility and adoption among radiologists with varying experience levels remains unclear. This study compared the performance of two deep learning-based image reconstruction methods, DLIR and Pixelshine, an adaptive statistical iterative reconstruction-volume (ASIR-V) method, and filtered back projection (FBP) across 33 contrast-enhanced CT staging examinations, evaluated by 20-24 radiologists. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured for tumor and surrounding organ tissues across DLIR (Low, Medium, High), Pixelshine (Soft, Ultrasoft), ASIR-V (30-100%), and FBP. In two blinded surveys, radiologists ranked eight reconstructions and assessed four using a 5-point Likert scale in arterial and portal venous phases. DLIR consistently outperformed other methods in SNR, CNR, image quality, image interpretation, structural differentiability and diagnostic certainty. Pixelshine performed comparably only to ASIR-V 50%. No significant differences were observed between junior and senior radiologists. In conclusion, DLIR-based techniques have the potential to establish a new benchmark in clinical CT imaging, offering superior image quality for tumor staging, enhanced diagnostic capabilities, and seamless integration into existing workflows without requiring an extensive learning curve.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning image reconstruction (DLIR) has shown potential to enhance computed tomography (CT) image quality, but its impact on tumor visibility and adoption among radiologists with varying experience levels remains unclear. This study compared the performance of two deep learning-based image reconstruction methods, DLIR and Pixelshine, an adaptive statistical iterative reconstruction-volume (ASIR-V) method, and filtered back projection (FBP) across 33 contrast-enhanced CT staging examinations, evaluated by 20-24 radiologists. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured for tumor and surrounding organ tissues across DLIR (Low, Medium, High), Pixelshine (Soft, Ultrasoft), ASIR-V (30-100%), and FBP. In two blinded surveys, radiologists ranked eight reconstructions and assessed four using a 5-point Likert scale in arterial and portal venous phases. DLIR consistently outperformed other methods in SNR, CNR, image quality, image interpretation, structural differentiability and diagnostic certainty. Pixelshine performed comparably only to ASIR-V 50%. No significant differences were observed between junior and senior radiologists. In conclusion, DLIR-based techniques have the potential to establish a new benchmark in clinical CT imaging, offering superior image quality for tumor staging, enhanced diagnostic capabilities, and seamless integration into existing workflows without requiring an extensive learning curve.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Nannochloris sp. JB17 as a Potential Microalga for Carbon Capture and Utilization Bio-Systems: Growth and Biochemical Composition Under High Bicarbonate Concentrations in Fresh and Sea Water. Assessment of the Active Sludge Microorganisms Population During Wastewater Treatment in a Micro-Pilot Plant. Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU. Complex Large-Deformation Multimodality Image Registration Network for Image-Guided Radiotherapy of Cervical Cancer. Development of Hemispherical 3D Models of Human Brain and B Cell Lymphomas Using On-Chip Cell Dome System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1