Analyzing the Impact of Binaural Beats on Anxiety Levels by a New Method Based on Denoised Harmonic Subtraction and Transient Temporal Feature Extraction.
{"title":"Analyzing the Impact of Binaural Beats on Anxiety Levels by a New Method Based on Denoised Harmonic Subtraction and Transient Temporal Feature Extraction.","authors":"Devika Rankhambe, Bharati Sanjay Ainapure, Bhargav Appasani, Avireni Srinivasulu, Nicu Bizon","doi":"10.3390/bioengineering11121251","DOIUrl":null,"url":null,"abstract":"<p><p>Anxiety is a widespread mental health issue, and binaural beats have been explored as a potential non-invasive treatment. EEG data reveal changes in neural oscillation and connectivity linked to anxiety reduction; however, harmonics introduced during signal acquisition and processing often distort these findings. Existing methods struggle to effectively reduce harmonics and capture the fine-grained temporal dynamics of EEG signals, leading to inaccurate feature extraction. Hence, a novel Denoised Harmonic Subtraction and Transient Temporal Feature Extraction is proposed to improve the analysis of the impact of binaural beats on anxiety levels. Initially, a novel Wiener Fused Convo Filter is introduced to capture spatial features and eliminate linear noise in EEG signals. Next, an Intrinsic Harmonic Subtraction Network is employed, utilizing the Attentive Weighted Least Mean Square (AW-LMS) algorithm to capture nonlinear summation and resonant coupling effects, effectively eliminating the misinterpretation of brain rhythms. To address the challenge of fine-grained temporal dynamics, an Embedded Transfo XL Recurrent Network is introduced to detect and extract relevant parameters associated with transient events in EEG data. Finally, EEG data undergo harmonic reduction and temporal feature extraction before classification with a cross-correlated Markov Deep Q-Network (DQN). This facilitates anxiety level classification into normal, mild, moderate, and severe categories. The model demonstrated a high accuracy of 95.6%, precision of 90%, sensitivity of 93.2%, and specificity of 96% in classifying anxiety levels, outperforming previous models. This integrated approach enhances EEG signal processing, enabling reliable anxiety classification and offering valuable insights for therapeutic interventions.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121251","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anxiety is a widespread mental health issue, and binaural beats have been explored as a potential non-invasive treatment. EEG data reveal changes in neural oscillation and connectivity linked to anxiety reduction; however, harmonics introduced during signal acquisition and processing often distort these findings. Existing methods struggle to effectively reduce harmonics and capture the fine-grained temporal dynamics of EEG signals, leading to inaccurate feature extraction. Hence, a novel Denoised Harmonic Subtraction and Transient Temporal Feature Extraction is proposed to improve the analysis of the impact of binaural beats on anxiety levels. Initially, a novel Wiener Fused Convo Filter is introduced to capture spatial features and eliminate linear noise in EEG signals. Next, an Intrinsic Harmonic Subtraction Network is employed, utilizing the Attentive Weighted Least Mean Square (AW-LMS) algorithm to capture nonlinear summation and resonant coupling effects, effectively eliminating the misinterpretation of brain rhythms. To address the challenge of fine-grained temporal dynamics, an Embedded Transfo XL Recurrent Network is introduced to detect and extract relevant parameters associated with transient events in EEG data. Finally, EEG data undergo harmonic reduction and temporal feature extraction before classification with a cross-correlated Markov Deep Q-Network (DQN). This facilitates anxiety level classification into normal, mild, moderate, and severe categories. The model demonstrated a high accuracy of 95.6%, precision of 90%, sensitivity of 93.2%, and specificity of 96% in classifying anxiety levels, outperforming previous models. This integrated approach enhances EEG signal processing, enabling reliable anxiety classification and offering valuable insights for therapeutic interventions.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering