{"title":"Pemafibrate Induces a Low Level of PPARα Agonist-Stimulated mRNA Expression of ANGPTL4 in ARPE19 Cell.","authors":"Hiroshi Ohguro, Nami Nishikiori, Tatsuya Sato, Megumi Watanabe, Megumi Higashide, Masato Furuhashi","doi":"10.3390/bioengineering11121247","DOIUrl":null,"url":null,"abstract":"<p><p>To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells. RNA sequencing analysis revealed the following differentially expressed genes (DEGs): (1) NT vs. Pema-treated cells, 37 substantially upregulated and 72 substantially downregulated DEGs; (2) NT vs. GW-treated cells, 32 substantially upregulated and 54 substantially downregulated DEGs; and (3) Pema vs. GW, 67 substantially upregulated and 51 markedly downregulated DEGs. Gene ontology (GO) analysis and ingenuity pathway analysis (IPA) showed several overlaps or differences in biological functions and pathways estimated by the DEGs between NT and Pema-treated cells and between NT and GW-treated cells, presumably due to common PPARα agonist actions or unspecific off-target effects to each. For further estimation, overlaps of DEGs among different pairs of comparisons (NT vs. Pema, NT vs. GW, and Pema vs. GW) were listed up. Angiopoietin-like 4 (ANGPTL4), which has been shown to cause deterioration of RID, was the only DEG identified as a common significantly upregulated DEG in all three pairs of comparisons, suggesting that ANGPTL4 was upregulated by the PPARα agonist action but that its levels were substantially lower in Pema-treated cells than in GW-treated cells. In qPCR analysis, such lower efficacy for upregulation of the mRNA expression of ANGPTL4 by Pema than by GW was confirmed, in addition to substantial upregulation of the mRNA expression of HIF1α by both agonists. However, different Pema and GW-induced effects on mRNA expression of HIF1α (Pema, no change; GW, significantly downregulated) and mRNA expression of ANGPTL4 (Pema, significantly upregulated; GW, significantly downregulated) were observed in HepG2 cells, a human hepatocyte cell line. The results of this study suggest that actions of the PPARα agonists Pema and GW are significantly organ-specific and that lower upregulation of mRNA expression of the DR-worsening factor ANGPTL4 by Pema than by GW in ARPE19 cells may minimize the risk for development of RID.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121247","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells. RNA sequencing analysis revealed the following differentially expressed genes (DEGs): (1) NT vs. Pema-treated cells, 37 substantially upregulated and 72 substantially downregulated DEGs; (2) NT vs. GW-treated cells, 32 substantially upregulated and 54 substantially downregulated DEGs; and (3) Pema vs. GW, 67 substantially upregulated and 51 markedly downregulated DEGs. Gene ontology (GO) analysis and ingenuity pathway analysis (IPA) showed several overlaps or differences in biological functions and pathways estimated by the DEGs between NT and Pema-treated cells and between NT and GW-treated cells, presumably due to common PPARα agonist actions or unspecific off-target effects to each. For further estimation, overlaps of DEGs among different pairs of comparisons (NT vs. Pema, NT vs. GW, and Pema vs. GW) were listed up. Angiopoietin-like 4 (ANGPTL4), which has been shown to cause deterioration of RID, was the only DEG identified as a common significantly upregulated DEG in all three pairs of comparisons, suggesting that ANGPTL4 was upregulated by the PPARα agonist action but that its levels were substantially lower in Pema-treated cells than in GW-treated cells. In qPCR analysis, such lower efficacy for upregulation of the mRNA expression of ANGPTL4 by Pema than by GW was confirmed, in addition to substantial upregulation of the mRNA expression of HIF1α by both agonists. However, different Pema and GW-induced effects on mRNA expression of HIF1α (Pema, no change; GW, significantly downregulated) and mRNA expression of ANGPTL4 (Pema, significantly upregulated; GW, significantly downregulated) were observed in HepG2 cells, a human hepatocyte cell line. The results of this study suggest that actions of the PPARα agonists Pema and GW are significantly organ-specific and that lower upregulation of mRNA expression of the DR-worsening factor ANGPTL4 by Pema than by GW in ARPE19 cells may minimize the risk for development of RID.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering