{"title":"SequenceCraft: machine learning-based resource for exploratory analysis of RNA-cleaving deoxyribozymes.","authors":"M Eremeyeva, Y Din, N Shirokii, N Serov","doi":"10.1186/s12859-024-06019-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate. However, the vast majority of existing DNAzyme catalytic cores have low efficacy in in vivo experiments, whereas SELEX based on in vitro screening offers long and expensive selection cycle with the average success rate of ~ 30%, moreover not allowing the direct selection of chemically modified DNAzymes, which were previously shown to demonstrate higher activity in vivo. Therefore, there is a huge need in in silico approach for exploratory analysis of RNA-cleaving DNAzyme cores to drastically ease the discovery of novel catalytic cores with superior activities.</p><p><strong>Results: </strong>In this work, we develop a machine learning based open-source platform SequenceCraft allowing experimental scientists to perform DNAzyme exploratory analysis via quantitative observed rate constant (k<sub>obs</sub>) estimation as well as statistical and clustering data analysis. This became possible with the development of a unique curated database of > 350 RNA-cleaving catalytic cores, property-based sequence representations allowing to work with both conventional and chemically modified nucleotides, and optimized k<sub>obs</sub> predicting algorithm achieving Q<sup>2</sup> > 0.9 on experimental data published to date.</p><p><strong>Conclusions: </strong>This work represents a significant advancement in DNAzyme research, providing a tool for more efficient discovery of RNA-cleaving DNAzymes. The SequenceCraft platform offers an in silico alternative to traditional experimental approaches, potentially accelerating the development of DNAzymes.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"2"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06019-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate. However, the vast majority of existing DNAzyme catalytic cores have low efficacy in in vivo experiments, whereas SELEX based on in vitro screening offers long and expensive selection cycle with the average success rate of ~ 30%, moreover not allowing the direct selection of chemically modified DNAzymes, which were previously shown to demonstrate higher activity in vivo. Therefore, there is a huge need in in silico approach for exploratory analysis of RNA-cleaving DNAzyme cores to drastically ease the discovery of novel catalytic cores with superior activities.
Results: In this work, we develop a machine learning based open-source platform SequenceCraft allowing experimental scientists to perform DNAzyme exploratory analysis via quantitative observed rate constant (kobs) estimation as well as statistical and clustering data analysis. This became possible with the development of a unique curated database of > 350 RNA-cleaving catalytic cores, property-based sequence representations allowing to work with both conventional and chemically modified nucleotides, and optimized kobs predicting algorithm achieving Q2 > 0.9 on experimental data published to date.
Conclusions: This work represents a significant advancement in DNAzyme research, providing a tool for more efficient discovery of RNA-cleaving DNAzymes. The SequenceCraft platform offers an in silico alternative to traditional experimental approaches, potentially accelerating the development of DNAzymes.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.