Riccardo Campi , Antonio De Santis , Paolo Colombo , Paolo Scarpazza , Marco Masseroli
{"title":"Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients","authors":"Riccardo Campi , Antonio De Santis , Paolo Colombo , Paolo Scarpazza , Marco Masseroli","doi":"10.1016/j.cmpb.2024.108574","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography, or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy is recommended as the initial treatment approach for mild ARDS. Even though the efficacy of H-CPAP in managing patients with moderate-to-severe hypoxemia remains unclear, its use has increased for these cases in response to the emergence of the COVID-19 Pandemic. Using the electronic medical records (EMR) from the Pulmonology Department of Vimercate Hospital, in this study we develop and evaluate a Machine Learning (ML) system able to predict the failure of H-CPAP therapy on ARDS patients.</div></div><div><h3>Methods:</h3><div>The Vimercate Hospital EMR provides demographic information, blood tests, and vital parameters of all hospitalizations of patients who are treated with H-CPAP and diagnosed with ARDS. This data is used to create a dataset of 622 records and 38 features, with 70%–30% split between training and test sets. Different ML models such as <em>SVM</em>, <em>XGBoost</em>, <em>Neural Network</em>, <em>Random Forest</em>, and <em>Logistic Regression</em> are iteratively trained in a cross-validation fashion. We also apply a feature selection algorithm to improve predictions quality and reduce the number of features.</div></div><div><h3>Results and Conclusions:</h3><div>The <em>SVM</em> and <em>Neural Network</em> models proved to be the most effective, achieving final accuracies of 95.19% and 94.65%, respectively. In terms of F1-score, the models scored 88.61% and 87.18%, respectively. Additionally, the <em>SVM</em> and <em>XGBoost</em> models performed well with a reduced number of features (23 and 13, respectively). The <em>PaO2/FiO2 Ratio</em>, <em>C-Reactive Protein</em>, and <em>O2 Saturation</em> resulted as the most important features, followed by <em>Heartbeats</em>, <em>White Blood Cells</em>, and <em>D-Dimer</em>, in accordance with the clinical scientific literature.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"Article 108574"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724005674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography, or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy is recommended as the initial treatment approach for mild ARDS. Even though the efficacy of H-CPAP in managing patients with moderate-to-severe hypoxemia remains unclear, its use has increased for these cases in response to the emergence of the COVID-19 Pandemic. Using the electronic medical records (EMR) from the Pulmonology Department of Vimercate Hospital, in this study we develop and evaluate a Machine Learning (ML) system able to predict the failure of H-CPAP therapy on ARDS patients.
Methods:
The Vimercate Hospital EMR provides demographic information, blood tests, and vital parameters of all hospitalizations of patients who are treated with H-CPAP and diagnosed with ARDS. This data is used to create a dataset of 622 records and 38 features, with 70%–30% split between training and test sets. Different ML models such as SVM, XGBoost, Neural Network, Random Forest, and Logistic Regression are iteratively trained in a cross-validation fashion. We also apply a feature selection algorithm to improve predictions quality and reduce the number of features.
Results and Conclusions:
The SVM and Neural Network models proved to be the most effective, achieving final accuracies of 95.19% and 94.65%, respectively. In terms of F1-score, the models scored 88.61% and 87.18%, respectively. Additionally, the SVM and XGBoost models performed well with a reduced number of features (23 and 13, respectively). The PaO2/FiO2 Ratio, C-Reactive Protein, and O2 Saturation resulted as the most important features, followed by Heartbeats, White Blood Cells, and D-Dimer, in accordance with the clinical scientific literature.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.