Govind Ummethala, Ravi Jada, Shourya Dutta-Gupta, Junbeom Park, Amir H Tavabi, Shibabrata Basak, Robert Hooley, Hongyu Sun, H Hugo Pérez Garza, Rüdiger-A Eichel, Rafal E Dunin-Borkowski, Sai Rama Krishna Malladi
{"title":"Real-time visualisation of fast nanoscale processes during liquid reagent mixing by liquid cell transmission electron microscopy.","authors":"Govind Ummethala, Ravi Jada, Shourya Dutta-Gupta, Junbeom Park, Amir H Tavabi, Shibabrata Basak, Robert Hooley, Hongyu Sun, H Hugo Pérez Garza, Rüdiger-A Eichel, Rafal E Dunin-Borkowski, Sai Rama Krishna Malladi","doi":"10.1038/s42004-025-01407-3","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"8"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01407-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.