Evgeniy O Kiktenko, Andrey Tayduganov, Aleksey K Fedorov
{"title":"Routing Algorithm Within the Multiple Non-Overlapping Paths' Approach for Quantum Key Distribution Networks.","authors":"Evgeniy O Kiktenko, Andrey Tayduganov, Aleksey K Fedorov","doi":"10.3390/e26121102","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a novel key routing algorithm for quantum key distribution (QKD) networks that utilizes a distribution of keys between remote nodes, i.e., not directly connected by a QKD link, through multiple non-overlapping paths. This approach focuses on the security of a QKD network by minimizing potential vulnerabilities associated with individual trusted nodes. The algorithm ensures a balanced allocation of the workload across the QKD network links, while aiming for the target key generation rate between directly connected and remote nodes. We present the results of testing the algorithm on two QKD network models consisting of 6 and 10 nodes. The testing demonstrates the ability of the algorithm to distribute secure keys among the nodes of the network in an all-to-all manner, ensuring that the information-theoretic security of the keys between remote nodes is maintained even when one of the trusted nodes is compromised. These results highlight the potential of the algorithm to improve the performance of QKD networks.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121102","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a novel key routing algorithm for quantum key distribution (QKD) networks that utilizes a distribution of keys between remote nodes, i.e., not directly connected by a QKD link, through multiple non-overlapping paths. This approach focuses on the security of a QKD network by minimizing potential vulnerabilities associated with individual trusted nodes. The algorithm ensures a balanced allocation of the workload across the QKD network links, while aiming for the target key generation rate between directly connected and remote nodes. We present the results of testing the algorithm on two QKD network models consisting of 6 and 10 nodes. The testing demonstrates the ability of the algorithm to distribute secure keys among the nodes of the network in an all-to-all manner, ensuring that the information-theoretic security of the keys between remote nodes is maintained even when one of the trusted nodes is compromised. These results highlight the potential of the algorithm to improve the performance of QKD networks.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.