Routing Algorithm Within the Multiple Non-Overlapping Paths' Approach for Quantum Key Distribution Networks.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-16 DOI:10.3390/e26121102
Evgeniy O Kiktenko, Andrey Tayduganov, Aleksey K Fedorov
{"title":"Routing Algorithm Within the Multiple Non-Overlapping Paths' Approach for Quantum Key Distribution Networks.","authors":"Evgeniy O Kiktenko, Andrey Tayduganov, Aleksey K Fedorov","doi":"10.3390/e26121102","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a novel key routing algorithm for quantum key distribution (QKD) networks that utilizes a distribution of keys between remote nodes, i.e., not directly connected by a QKD link, through multiple non-overlapping paths. This approach focuses on the security of a QKD network by minimizing potential vulnerabilities associated with individual trusted nodes. The algorithm ensures a balanced allocation of the workload across the QKD network links, while aiming for the target key generation rate between directly connected and remote nodes. We present the results of testing the algorithm on two QKD network models consisting of 6 and 10 nodes. The testing demonstrates the ability of the algorithm to distribute secure keys among the nodes of the network in an all-to-all manner, ensuring that the information-theoretic security of the keys between remote nodes is maintained even when one of the trusted nodes is compromised. These results highlight the potential of the algorithm to improve the performance of QKD networks.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121102","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a novel key routing algorithm for quantum key distribution (QKD) networks that utilizes a distribution of keys between remote nodes, i.e., not directly connected by a QKD link, through multiple non-overlapping paths. This approach focuses on the security of a QKD network by minimizing potential vulnerabilities associated with individual trusted nodes. The algorithm ensures a balanced allocation of the workload across the QKD network links, while aiming for the target key generation rate between directly connected and remote nodes. We present the results of testing the algorithm on two QKD network models consisting of 6 and 10 nodes. The testing demonstrates the ability of the algorithm to distribute secure keys among the nodes of the network in an all-to-all manner, ensuring that the information-theoretic security of the keys between remote nodes is maintained even when one of the trusted nodes is compromised. These results highlight the potential of the algorithm to improve the performance of QKD networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子密钥分发网络的多路径非重叠路由算法。
我们为量子密钥分发(QKD)网络开发了一种新的密钥路由算法,该算法利用远程节点之间的密钥分发,即不直接由QKD链路连接,通过多个非重叠路径。这种方法通过最小化与单个可信节点相关的潜在漏洞来关注QKD网络的安全性。该算法确保在QKD网络链路上均衡分配工作负载,同时以直连节点和远程节点之间的目标密钥生成速率为目标。我们给出了在6个节点和10个节点组成的两个QKD网络模型上测试该算法的结果。测试证明了该算法能够以全对全的方式在网络节点之间分发安全密钥,从而确保远程节点之间密钥的信息论安全性得到维护,即使其中一个受信任节点遭到破坏。这些结果突出了该算法在提高QKD网络性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Fault Root Cause Analysis Based on Liang-Kleeman Information Flow and Graphical Lasso. Lacunary Series and Strong Approximation. Research on Development Progress and Test Evaluation of Post-Quantum Cryptography. Exploring Causal Network Complexity in Industrial Linkages: A Comparative Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1