Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-18 DOI:10.3390/e26121109
Giuseppe Florio, Stefano Giordano, Giuseppe Puglisi
{"title":"Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.","authors":"Giuseppe Florio, Stefano Giordano, Giuseppe Puglisi","doi":"10.3390/e26121109","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Applications of Entropy in Data Analysis and Machine Learning: A Review. Transpiling Quantum Assembly Language Circuits to a Qudit Form. Fundamental Limits of an Irreversible Heat Engine. Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1