Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.

IF 2.2 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY Esophagus Pub Date : 2025-01-10 DOI:10.1007/s10388-025-01106-x
Takuma Miura, Takumi Yashima, Eichi Takaya, Yusuke Taniyama, Chiaki Sato, Hiroshi Okamoto, Yohei Ozawa, Hirotaka Ishida, Michiaki Unno, Takuya Ueda, Takashi Kamei
{"title":"Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.","authors":"Takuma Miura, Takumi Yashima, Eichi Takaya, Yusuke Taniyama, Chiaki Sato, Hiroshi Okamoto, Yohei Ozawa, Hirotaka Ishida, Michiaki Unno, Takuya Ueda, Takashi Kamei","doi":"10.1007/s10388-025-01106-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy. This study aims to build a deep-learning model to predict the response of esophageal squamous cell carcinoma to preoperative chemotherapy by utilizing multimodal data integrating esophageal endoscopic images and clinical information.</p><p><strong>Methods: </strong>170 patients with locally advanced esophageal squamous cell carcinoma were retrospectively studied, and endoscopic images and clinical information before neoadjuvant chemotherapy were collected. Endoscopic images alone and endoscopic images plus clinical information were each analyzed with a deep-learning model based on ResNet50. The clinical information alone was analyzed using logistic regression machine learning models, and the area under a receiver operating characteristic curve was calculated to compare the accuracy of each model. Gradient-weighted Class Activation Mapping was used on the endoscopic images to analyze the trend of the regions of interest in this model.</p><p><strong>Results: </strong>The area under the curve by clinical information alone, endoscopy alone, and both combined were 0.64, 0.55, and 0.77, respectively. The endoscopic image plus clinical information group was statistically more significant than the other models. This model focused more on the tumor when trained with clinical information.</p><p><strong>Conclusions: </strong>The deep-learning model developed suggests that gastrointestinal endoscopic imaging, in combination with other clinical information, has the potential to predict the efficacy of neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma before treatment.</p>","PeriodicalId":11918,"journal":{"name":"Esophagus","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esophagus","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10388-025-01106-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy. This study aims to build a deep-learning model to predict the response of esophageal squamous cell carcinoma to preoperative chemotherapy by utilizing multimodal data integrating esophageal endoscopic images and clinical information.

Methods: 170 patients with locally advanced esophageal squamous cell carcinoma were retrospectively studied, and endoscopic images and clinical information before neoadjuvant chemotherapy were collected. Endoscopic images alone and endoscopic images plus clinical information were each analyzed with a deep-learning model based on ResNet50. The clinical information alone was analyzed using logistic regression machine learning models, and the area under a receiver operating characteristic curve was calculated to compare the accuracy of each model. Gradient-weighted Class Activation Mapping was used on the endoscopic images to analyze the trend of the regions of interest in this model.

Results: The area under the curve by clinical information alone, endoscopy alone, and both combined were 0.64, 0.55, and 0.77, respectively. The endoscopic image plus clinical information group was statistically more significant than the other models. This model focused more on the tumor when trained with clinical information.

Conclusions: The deep-learning model developed suggests that gastrointestinal endoscopic imaging, in combination with other clinical information, has the potential to predict the efficacy of neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma before treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Esophagus
Esophagus GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.90
自引率
8.30%
发文量
78
审稿时长
>12 weeks
期刊介绍: Esophagus, the official journal of the Japan Esophageal Society, introduces practitioners and researchers to significant studies in the fields of benign and malignant diseases of the esophagus. The journal welcomes original articles, review articles, and short articles including technical notes ( How I do it ), which will be peer-reviewed by the editorial board. Letters to the editor are also welcome. Special articles on esophageal diseases will be provided by the editorial board, and proceedings of symposia and workshops will be included in special issues for the Annual Congress of the Society.
期刊最新文献
Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Lymph-node ratio as a risk factor for recurrence following neoadjuvant docetaxel, cisplatin, and 5-fluorouracil therapy for locally advanced esophageal squamous cell carcinoma. A nationwide survey on the safety of cricothyrotomy: a multicenter retrospective study in Japan. Modification of the lesser curvature incision line enhanced gastric conduit perfusion as determined by indocyanine green fluorescence imaging and decreased the incidence of anastomotic leakage following esophagectomy. Stepwise innovation of anesthesia through endotracheal intubation during esophagectomy for cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1