Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.
{"title":"Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.","authors":"Takuma Miura, Takumi Yashima, Eichi Takaya, Yusuke Taniyama, Chiaki Sato, Hiroshi Okamoto, Yohei Ozawa, Hirotaka Ishida, Michiaki Unno, Takuya Ueda, Takashi Kamei","doi":"10.1007/s10388-025-01106-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy. This study aims to build a deep-learning model to predict the response of esophageal squamous cell carcinoma to preoperative chemotherapy by utilizing multimodal data integrating esophageal endoscopic images and clinical information.</p><p><strong>Methods: </strong>170 patients with locally advanced esophageal squamous cell carcinoma were retrospectively studied, and endoscopic images and clinical information before neoadjuvant chemotherapy were collected. Endoscopic images alone and endoscopic images plus clinical information were each analyzed with a deep-learning model based on ResNet50. The clinical information alone was analyzed using logistic regression machine learning models, and the area under a receiver operating characteristic curve was calculated to compare the accuracy of each model. Gradient-weighted Class Activation Mapping was used on the endoscopic images to analyze the trend of the regions of interest in this model.</p><p><strong>Results: </strong>The area under the curve by clinical information alone, endoscopy alone, and both combined were 0.64, 0.55, and 0.77, respectively. The endoscopic image plus clinical information group was statistically more significant than the other models. This model focused more on the tumor when trained with clinical information.</p><p><strong>Conclusions: </strong>The deep-learning model developed suggests that gastrointestinal endoscopic imaging, in combination with other clinical information, has the potential to predict the efficacy of neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma before treatment.</p>","PeriodicalId":11918,"journal":{"name":"Esophagus","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esophagus","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10388-025-01106-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy. This study aims to build a deep-learning model to predict the response of esophageal squamous cell carcinoma to preoperative chemotherapy by utilizing multimodal data integrating esophageal endoscopic images and clinical information.
Methods: 170 patients with locally advanced esophageal squamous cell carcinoma were retrospectively studied, and endoscopic images and clinical information before neoadjuvant chemotherapy were collected. Endoscopic images alone and endoscopic images plus clinical information were each analyzed with a deep-learning model based on ResNet50. The clinical information alone was analyzed using logistic regression machine learning models, and the area under a receiver operating characteristic curve was calculated to compare the accuracy of each model. Gradient-weighted Class Activation Mapping was used on the endoscopic images to analyze the trend of the regions of interest in this model.
Results: The area under the curve by clinical information alone, endoscopy alone, and both combined were 0.64, 0.55, and 0.77, respectively. The endoscopic image plus clinical information group was statistically more significant than the other models. This model focused more on the tumor when trained with clinical information.
Conclusions: The deep-learning model developed suggests that gastrointestinal endoscopic imaging, in combination with other clinical information, has the potential to predict the efficacy of neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma before treatment.
期刊介绍:
Esophagus, the official journal of the Japan Esophageal Society, introduces practitioners and researchers to significant studies in the fields of benign and malignant diseases of the esophagus. The journal welcomes original articles, review articles, and short articles including technical notes ( How I do it ), which will be peer-reviewed by the editorial board. Letters to the editor are also welcome. Special articles on esophageal diseases will be provided by the editorial board, and proceedings of symposia and workshops will be included in special issues for the Annual Congress of the Society.