{"title":"The Impact of Carbon on Electronic Structure of N-Doped ZnO Films: Scanning Photoelectron Microscopy Study and DFT Calculations.","authors":"Elzbieta Guziewicz, Sushma Mishra, Matteo Amati, Luca Gregoratti, Oksana Volnianska","doi":"10.3390/nano15010030","DOIUrl":null,"url":null,"abstract":"<p><p>A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. <i>State-of-the-Art</i> spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment. It has been shown that different columns reveal considerably different shape of the valence band (VB) photoemission spectra and that some of them are shifted towards the bandgap. The shift of the VB maximum, which is associated with hybridization with acceptor states, was found to be correlated with carbon content measured as a relative intensity of the C1s and Zn3d core levels. Generalized Gradient Approximation (GGA) supplemented by +U correction was applied to both Zn3d and O2p orbitals for calculation of the VZn migration properties by the Nudged Elastic Band (NEB) method. The results suggest that interstitial -CHx groups facilitate the formation of acceptor complexes due to additional lattice perturbation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010030","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. State-of-the-Art spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment. It has been shown that different columns reveal considerably different shape of the valence band (VB) photoemission spectra and that some of them are shifted towards the bandgap. The shift of the VB maximum, which is associated with hybridization with acceptor states, was found to be correlated with carbon content measured as a relative intensity of the C1s and Zn3d core levels. Generalized Gradient Approximation (GGA) supplemented by +U correction was applied to both Zn3d and O2p orbitals for calculation of the VZn migration properties by the Nudged Elastic Band (NEB) method. The results suggest that interstitial -CHx groups facilitate the formation of acceptor complexes due to additional lattice perturbation.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.