Yingying Wang, Yang Shi, Liangwei Li, Zhiyan Zhu, Muhan Liu, Xiangyu Jin, Haodong Li, Guobang Jiang, Jizhai Cui, Shaojie Ma, Qiong He, Lei Zhou, Shulin Sun
{"title":"Electromagnetic Wavefront Engineering by Switchable and Multifunctional Kirigami Metasurfaces.","authors":"Yingying Wang, Yang Shi, Liangwei Li, Zhiyan Zhu, Muhan Liu, Xiangyu Jin, Haodong Li, Guobang Jiang, Jizhai Cui, Shaojie Ma, Qiong He, Lei Zhou, Shulin Sun","doi":"10.3390/nano15010061","DOIUrl":null,"url":null,"abstract":"<p><p>Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces. Two spin-modulated wave-controls are enabled by the proposed high-efficiency metasurface, which is designed using both resonant and geometric phases. Furthermore, the switchable wavefront tailoring can also be achieved by flexibly altering the lattice constant and reforming the phase retardation of the metasurfaces based on the \"rotating square\" (RS) kirigami technique. As a proof of concept, a kirigami metasurface is designed that successfully demonstrates dynamic controls of three-channel beam steering. In addition, another kirigami metasurface is built for realizing tri-channel complex wavefront engineering, including straight beam focusing, tilted beam focusing, and anomalous reflection. By altering the polarization of input waves as well as transformation states, the functionality of the metadevice can be switched flexibly among three different channels. Microwave experiments show good agreement with full-wave simulations, clearly demonstrating the performance of the metadevices. This strategy exhibits advantages such as flexible control, low cost, and multiple and switchable functionalities, providing a new pathway for achieving switchable wavefront engineering.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces. Two spin-modulated wave-controls are enabled by the proposed high-efficiency metasurface, which is designed using both resonant and geometric phases. Furthermore, the switchable wavefront tailoring can also be achieved by flexibly altering the lattice constant and reforming the phase retardation of the metasurfaces based on the "rotating square" (RS) kirigami technique. As a proof of concept, a kirigami metasurface is designed that successfully demonstrates dynamic controls of three-channel beam steering. In addition, another kirigami metasurface is built for realizing tri-channel complex wavefront engineering, including straight beam focusing, tilted beam focusing, and anomalous reflection. By altering the polarization of input waves as well as transformation states, the functionality of the metadevice can be switched flexibly among three different channels. Microwave experiments show good agreement with full-wave simulations, clearly demonstrating the performance of the metadevices. This strategy exhibits advantages such as flexible control, low cost, and multiple and switchable functionalities, providing a new pathway for achieving switchable wavefront engineering.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.