Carlos Ceballos-Alvarez, Maziar Jafari, Mohamed Siaj, Samaneh Shahgaldi, Ricardo Izquierdo
{"title":"Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion<sup>®</sup> Membranes.","authors":"Carlos Ceballos-Alvarez, Maziar Jafari, Mohamed Siaj, Samaneh Shahgaldi, Ricardo Izquierdo","doi":"10.3390/nano15010068","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion<sup>®</sup> 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion<sup>®</sup> membranes. The GO covering only 35% of the membrane surface increased the composite's wettability from hydrophobic (105.2°) to a highly hydrophilic angle (84.4°) while slightly reducing membrane swelling. Tensile tests depicted an increase in both the strain levels and tensile loads before breaking. The samples with GO presented remarkable mechanical properties when the annealing time and temperature increased; while the Nafion<sup>®</sup> control samples failed at elongations of 95% and 98%, their counterparts with GO on the surface achieved elongations of 248% and 191% when annealed at 80 °C and 110 °C respectively, demonstrating that the presence of GO mechanically stabilizes the membranes under tension. In exchange, the presence of GO altered the smoothness of the membrane surface going from an average 1.4 nm before the printing to values ranging from 8.4 to 10.2 nm depending on the annealing conditions which could affect the quality of the subsequent catalyst layer printing. Overall, the polymer's electrical insulation was unaffected, making the Nafion<sup>®</sup>-GO blend a more robust material than those traditionally used.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010068","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion® 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion® membranes. The GO covering only 35% of the membrane surface increased the composite's wettability from hydrophobic (105.2°) to a highly hydrophilic angle (84.4°) while slightly reducing membrane swelling. Tensile tests depicted an increase in both the strain levels and tensile loads before breaking. The samples with GO presented remarkable mechanical properties when the annealing time and temperature increased; while the Nafion® control samples failed at elongations of 95% and 98%, their counterparts with GO on the surface achieved elongations of 248% and 191% when annealed at 80 °C and 110 °C respectively, demonstrating that the presence of GO mechanically stabilizes the membranes under tension. In exchange, the presence of GO altered the smoothness of the membrane surface going from an average 1.4 nm before the printing to values ranging from 8.4 to 10.2 nm depending on the annealing conditions which could affect the quality of the subsequent catalyst layer printing. Overall, the polymer's electrical insulation was unaffected, making the Nafion®-GO blend a more robust material than those traditionally used.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.