Improved Mechanical Performances of Hastelloy C276 Composite Coatings Reinforced with SiC by Laser Cladding.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-26 DOI:10.3390/nano15010018
Yuqing Tang, Zheng Lu, Xuan Zhang, Xihuai Wang, Shengbin Zhao, Mingdi Wang
{"title":"Improved Mechanical Performances of Hastelloy C276 Composite Coatings Reinforced with SiC by Laser Cladding.","authors":"Yuqing Tang, Zheng Lu, Xuan Zhang, Xihuai Wang, Shengbin Zhao, Mingdi Wang","doi":"10.3390/nano15010018","DOIUrl":null,"url":null,"abstract":"<p><p>Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects. The phase compositions of the Hastelloy C276 coating includes γ-(Ni, Fe), Ni<sub>2</sub>C, M<sub>6</sub>C, M<sub>2</sub>(C, N) and M<sub>23</sub>C<sub>6</sub>. SiC addition resulted in the formation of high-hardness phases, such as Cr<sub>3</sub>Si and S<sub>5</sub>C<sub>3</sub>, with their peak intensity increasing with SiC content. The dendrites extend from the bonding zone towards the top of the coatings, and the crystal direction diffuses from the bottom to each area. Compared with the dendritic crystals formed at the bottom, the microstructure at the top is mostly equiaxed crystals and cellular crystals with smaller volume. When SiC powder particles are present around the crystals, the microstructure of the cladding layer grows acicular crystals containing Si and C. These acicular crystals tend to extend away from the residual SiC powder particles, and the grain size in this region is smaller and more densely distributed. This indicates that both melted and unmelted SiC powder particles can contribute to refining the grain structure of the cladding layer. The optimal SiC addition was determined to be 9 wt%, yielding an average microhardness of 670.1 HV<sub>0.5</sub>, which is 3.05 times that of the substrate and 1.19 times that of the 0 wt% SiC coating. The wear resistance was significantly enhanced, reflected by a friction coefficient of 0.17 (43.59% of the substrate, 68% of 0 wt%) and a wear rate of 14.32 × 10<sup>-6</sup> mm<sup>3</sup>N<sup>-1</sup>·m<sup>-1</sup> (27.35% of the substrate, 40.74% of 0 wt%). The self-corrosion potential measured at 315 mV, with a self-corrosion current density of 6.884 × 10⁻<sup>6</sup> A/cm<sup>2</sup>, and the electrochemical charge-transfer resistance was approximately 25 times that of the substrate and 1.26 times that of the 0 wt%. In this work, SiC-reinforced Hastelloy-SiC composite coating was studied, which provides a new solution to improve the hardness, wear resistance and corrosion resistance of 316L stainless steel.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010018","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects. The phase compositions of the Hastelloy C276 coating includes γ-(Ni, Fe), Ni2C, M6C, M2(C, N) and M23C6. SiC addition resulted in the formation of high-hardness phases, such as Cr3Si and S5C3, with their peak intensity increasing with SiC content. The dendrites extend from the bonding zone towards the top of the coatings, and the crystal direction diffuses from the bottom to each area. Compared with the dendritic crystals formed at the bottom, the microstructure at the top is mostly equiaxed crystals and cellular crystals with smaller volume. When SiC powder particles are present around the crystals, the microstructure of the cladding layer grows acicular crystals containing Si and C. These acicular crystals tend to extend away from the residual SiC powder particles, and the grain size in this region is smaller and more densely distributed. This indicates that both melted and unmelted SiC powder particles can contribute to refining the grain structure of the cladding layer. The optimal SiC addition was determined to be 9 wt%, yielding an average microhardness of 670.1 HV0.5, which is 3.05 times that of the substrate and 1.19 times that of the 0 wt% SiC coating. The wear resistance was significantly enhanced, reflected by a friction coefficient of 0.17 (43.59% of the substrate, 68% of 0 wt%) and a wear rate of 14.32 × 10-6 mm3N-1·m-1 (27.35% of the substrate, 40.74% of 0 wt%). The self-corrosion potential measured at 315 mV, with a self-corrosion current density of 6.884 × 10⁻6 A/cm2, and the electrochemical charge-transfer resistance was approximately 25 times that of the substrate and 1.26 times that of the 0 wt%. In this work, SiC-reinforced Hastelloy-SiC composite coating was studied, which provides a new solution to improve the hardness, wear resistance and corrosion resistance of 316L stainless steel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of Vicia faba. Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process. Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction. Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties. Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1