{"title":"Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.","authors":"Ahmad Al Shboul, Mohamed Siaj, Jerome Claverie","doi":"10.3390/nano15010023","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM<sub>11</sub>-<i>b</i>-EHA<sub>7</sub>), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp<sup>2</sup> surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar). DLPE proves particularly efficient in partitioning larger-diameter s-SWCNTs (0.85-1.0 nm) compared to those dispersed directly in isooctane by poly(CEM<sub>11</sub>-<i>b</i>-EHA<sub>7</sub>) using direct liquid-phase exfoliation (LPE) techniques for diameters ranging from 0.75 to 0.95 nm. The DLPE method, bolstered by poly(CEM<sub>11</sub>-<i>b</i>-EHA<sub>7</sub>), successfully eliminates impurities from s-SWCNT extraction, including residual metallic catalysts and carbonaceous substances, which constitute up to 20% of raw HiPCO SWCNTs. DLPE emerges as a scalable and straightforward approach for selectively extracting s-SWCNTs in nonpolar, low-boiling-point solvents like alkanes. These dispersions hold promise for fabricating fast-drying s-SWCNT inks, which are ideal for printed and flexible thin-film transistors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM11-b-EHA7), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp2 surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar). DLPE proves particularly efficient in partitioning larger-diameter s-SWCNTs (0.85-1.0 nm) compared to those dispersed directly in isooctane by poly(CEM11-b-EHA7) using direct liquid-phase exfoliation (LPE) techniques for diameters ranging from 0.75 to 0.95 nm. The DLPE method, bolstered by poly(CEM11-b-EHA7), successfully eliminates impurities from s-SWCNT extraction, including residual metallic catalysts and carbonaceous substances, which constitute up to 20% of raw HiPCO SWCNTs. DLPE emerges as a scalable and straightforward approach for selectively extracting s-SWCNTs in nonpolar, low-boiling-point solvents like alkanes. These dispersions hold promise for fabricating fast-drying s-SWCNT inks, which are ideal for printed and flexible thin-film transistors.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.