Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-12-27 DOI:10.1016/j.plaphy.2024.109441
H U I-Y I N G Chen, B I-X I A Xiong, R O N G-B I N G Huang, Y I N G Ni, X I A Li
{"title":"Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp.","authors":"H U I-Y I N G Chen, B I-X I A Xiong, R O N G-B I N G Huang, Y I N G Ni, X I A Li","doi":"10.1016/j.plaphy.2024.109441","DOIUrl":null,"url":null,"abstract":"<p><p>Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp. Based on proteomics analysis, a total of nine differential proteins are involved in the flavonoid metabolic process, which involves the following chalcone isomerase, flavonol synthase and anthocyanin synthasein. These proteins play important regulatory roles in anthocyanin biosynthesis and are the key regulators in anthocyanin accumulation. qRT-PCR was used to identify nine structural genes (PePAL2, PePAL4, PeC4H1, Pe4CL5, Pe4CL6, Pe4CL7, PeCHS2, PeCHS3 and PeUFGT2) playing key regulatory roles in anthocyanin synthesis in purple passion fruit pericarp. This study is expected to lay a foundation for the subsequent exploration of the regulatory mechanism of anthocyanin biosynthesis and the functional identification of related genes in passion fruit pericarp, and also to provide data support for the in-depth utilization of passion fruit resources.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109441"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp. Based on proteomics analysis, a total of nine differential proteins are involved in the flavonoid metabolic process, which involves the following chalcone isomerase, flavonol synthase and anthocyanin synthasein. These proteins play important regulatory roles in anthocyanin biosynthesis and are the key regulators in anthocyanin accumulation. qRT-PCR was used to identify nine structural genes (PePAL2, PePAL4, PeC4H1, Pe4CL5, Pe4CL6, Pe4CL7, PeCHS2, PeCHS3 and PeUFGT2) playing key regulatory roles in anthocyanin synthesis in purple passion fruit pericarp. This study is expected to lay a foundation for the subsequent exploration of the regulatory mechanism of anthocyanin biosynthesis and the functional identification of related genes in passion fruit pericarp, and also to provide data support for the in-depth utilization of passion fruit resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
百香果果皮花青素合成调控的综合代谢组学和蛋白质组学分析。
花青素是百香果果皮中主要的显色成分。尽管预计百香果皮是花青素的重要来源,但是,关于百香果皮中花青素生物合成的信息仍未被探索。通过代谢组学分析,从紫皮西番莲果皮中鉴定出5种花青素,其中牵牛花苷-3- o -阿拉伯糖苷、香叶香叶苷-3,5- o -二糖苷和牵牛花苷-3- o -芦丁苷对西番莲果皮的显色起关键作用。基于蛋白质组学分析,黄酮类代谢过程共涉及9个差异蛋白,包括查尔酮异构酶、黄酮醇合成酶和花青素合成酶。这些蛋白在花青素的生物合成中起着重要的调节作用,是花青素积累的关键调节因子。采用qRT-PCR技术鉴定了9个在紫西番莲果皮花青素合成中起关键调控作用的结构基因(PePAL2、PePAL4、PeC4H1、Pe4CL5、Pe4CL6、Pe4CL7、PeCHS2、PeCHS3和PeUFGT2)。本研究有望为后续探索百香果果皮花青素生物合成的调控机制及相关基因的功能鉴定奠定基础,并为百香果资源的深入利用提供数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1