Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-18 DOI:10.1016/j.plaphy.2025.109519
Buming Dong, Shaoyu Lang, Yongmei Gu, Xin Liu, Xingshun Song
{"title":"Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis.","authors":"Buming Dong, Shaoyu Lang, Yongmei Gu, Xin Liu, Xingshun Song","doi":"10.1016/j.plaphy.2025.109519","DOIUrl":null,"url":null,"abstract":"<p><p>The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity. Our analysis revealed numerous cis-regulatory elements associated with phytohormone responses and abiotic stress within the upstream promoter sequences of ChbHLH genes. The transcriptome results indicated that 84 ChbHLHs exhibited differential expression under drought conditions. Among those with upregulated expression levels, we selected ChMYC2 (ChbHLH93) for further investigation. Overexpressing ChMYC2 in Arabidopsis thaliana led to significantly elevated expression of drought-responsive genes compared to wild-type (WT) plants, resulting in enhanced drought resistance. Furthermore, we identified a gene, ChABI5 (ABA-insensitive 5), which interacts with ChMYC2. This study provides valuable genetic resources for future cultivation efforts aimed at developing stress-resistant and economically viable trees.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109519"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109519","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity. Our analysis revealed numerous cis-regulatory elements associated with phytohormone responses and abiotic stress within the upstream promoter sequences of ChbHLH genes. The transcriptome results indicated that 84 ChbHLHs exhibited differential expression under drought conditions. Among those with upregulated expression levels, we selected ChMYC2 (ChbHLH93) for further investigation. Overexpressing ChMYC2 in Arabidopsis thaliana led to significantly elevated expression of drought-responsive genes compared to wild-type (WT) plants, resulting in enhanced drought resistance. Furthermore, we identified a gene, ChABI5 (ABA-insensitive 5), which interacts with ChMYC2. This study provides valuable genetic resources for future cultivation efforts aimed at developing stress-resistant and economically viable trees.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1