Novel robust control with disturbance rejection for permanent magnet synchronous motors and experimental validation.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2025-01-01 DOI:10.1063/5.0233021
Zheng Wang, ShengChao Zhen, Qiong Huang, XiaoLi Liu, Ke Chen, Ye-Hwa Chen, Liansheng Gao, Zailin Feng
{"title":"Novel robust control with disturbance rejection for permanent magnet synchronous motors and experimental validation.","authors":"Zheng Wang, ShengChao Zhen, Qiong Huang, XiaoLi Liu, Ke Chen, Ye-Hwa Chen, Liansheng Gao, Zailin Feng","doi":"10.1063/5.0233021","DOIUrl":null,"url":null,"abstract":"<p><p>A novel robust control strategy is proposed in this work to address the dynamic control problem of permanent magnet synchronous motors (PMSM) position tracking and lessen the effect of system parameter and load fluctuations on the dynamic performance of PMSM. The tracking performance is improved by a robust control element built with the Lyapunov method to reduce the impact of uncertain factors such as parameter uncertainty, nonlinear friction, and external interference; the nominal control element is stabilized by the dynamics model. The uniformly bounded and uniformly final bounded systems are proven, and the associated conclusions are provided using the Lyapunov minimax approach. In this work, modeling and experimental investigation are conducted using the cSPACE fast controller, based on the permanent magnet synchronous motor test platform. The results of the testing and simulation show that the developed controller can effectively regulate the permanent magnet synchronous motor and achieve more accurate position tracking even in the face of ambiguity.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0233021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A novel robust control strategy is proposed in this work to address the dynamic control problem of permanent magnet synchronous motors (PMSM) position tracking and lessen the effect of system parameter and load fluctuations on the dynamic performance of PMSM. The tracking performance is improved by a robust control element built with the Lyapunov method to reduce the impact of uncertain factors such as parameter uncertainty, nonlinear friction, and external interference; the nominal control element is stabilized by the dynamics model. The uniformly bounded and uniformly final bounded systems are proven, and the associated conclusions are provided using the Lyapunov minimax approach. In this work, modeling and experimental investigation are conducted using the cSPACE fast controller, based on the permanent magnet synchronous motor test platform. The results of the testing and simulation show that the developed controller can effectively regulate the permanent magnet synchronous motor and achieve more accurate position tracking even in the face of ambiguity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
Automated high-resolution 3D inspection methods for sealant applications in aerospace based on line structured light. Cryogenic front-end circuit for capacitive sensing in superconducting gravimeters. Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches. Measurement and characterization of internal delamination defects in CFRP based on line laser thermography frequency domain analysis. An efficiency improvement method for high-voltage nanosecond pulse spiral generator based on optimized voltage wave propagation process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1