Computational insights into marine natural products as potential antidiabetic agents targeting the SIK2 protein kinase domain.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2024-12-01 Epub Date: 2025-01-08 DOI:10.1080/1062936X.2024.2443844
K Heyram, J Manikandan, D Prabhu, J Jeyakanthan
{"title":"Computational insights into marine natural products as potential antidiabetic agents targeting the SIK2 protein kinase domain.","authors":"K Heyram, J Manikandan, D Prabhu, J Jeyakanthan","doi":"10.1080/1062936X.2024.2443844","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM. The structural stability of the predicted SIK2 model was validated using computational methods and subsequently employed for structure-based virtual screening (SBVS) of over 38,000 MNPs. This approach identified five promising candidates: CMNPD21753 and CMNPD13370 from the Comprehensive Marine Natural Product Database, MNPD10685 from the Marine Natural Products Database, and SWMDRR053 and SWMDRR052 from the Seaweed Metabolite Database. The identified compounds demonstrated docking scores ranging from -7.64 to -11.95 kcal/mol and MMGBSA binding scores between -33.29 and -68.29 kcal/mol, with favourable predicted pharmacokinetic and toxicity profiles. Molecular dynamics simulations (MDS) revealed stronger predicted binding affinity for these compounds compared to ARN-3236, a known SIK2 inhibitor. Principal component (PC)-based free energy landscape (FEL) analysis further supported the stable binding of these compounds to SIK2. These computational findings highlight the potential of these leads as novel SIK2 inhibitors, warranting future in vitro and in vivo validation.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 12","pages":"1129-1154"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2443844","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM. The structural stability of the predicted SIK2 model was validated using computational methods and subsequently employed for structure-based virtual screening (SBVS) of over 38,000 MNPs. This approach identified five promising candidates: CMNPD21753 and CMNPD13370 from the Comprehensive Marine Natural Product Database, MNPD10685 from the Marine Natural Products Database, and SWMDRR053 and SWMDRR052 from the Seaweed Metabolite Database. The identified compounds demonstrated docking scores ranging from -7.64 to -11.95 kcal/mol and MMGBSA binding scores between -33.29 and -68.29 kcal/mol, with favourable predicted pharmacokinetic and toxicity profiles. Molecular dynamics simulations (MDS) revealed stronger predicted binding affinity for these compounds compared to ARN-3236, a known SIK2 inhibitor. Principal component (PC)-based free energy landscape (FEL) analysis further supported the stable binding of these compounds to SIK2. These computational findings highlight the potential of these leads as novel SIK2 inhibitors, warranting future in vitro and in vivo validation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms. Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein. Uncovering blood-brain barrier permeability: a comparative study of machine learning models using molecular fingerprints, and SHAP explainability. Unveiling the potential of Hamigeran-B from marine sponges as a probable inhibitor of Nipah virus RDRP through molecular modelling and dynamics simulation studies. Computational insights into marine natural products as potential antidiabetic agents targeting the SIK2 protein kinase domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1