{"title":"Computational insights into marine natural products as potential antidiabetic agents targeting the SIK2 protein kinase domain.","authors":"K Heyram, J Manikandan, D Prabhu, J Jeyakanthan","doi":"10.1080/1062936X.2024.2443844","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM. The structural stability of the predicted SIK2 model was validated using computational methods and subsequently employed for structure-based virtual screening (SBVS) of over 38,000 MNPs. This approach identified five promising candidates: CMNPD21753 and CMNPD13370 from the Comprehensive Marine Natural Product Database, MNPD10685 from the Marine Natural Products Database, and SWMDRR053 and SWMDRR052 from the Seaweed Metabolite Database. The identified compounds demonstrated docking scores ranging from -7.64 to -11.95 kcal/mol and MMGBSA binding scores between -33.29 and -68.29 kcal/mol, with favourable predicted pharmacokinetic and toxicity profiles. Molecular dynamics simulations (MDS) revealed stronger predicted binding affinity for these compounds compared to ARN-3236, a known SIK2 inhibitor. Principal component (PC)-based free energy landscape (FEL) analysis further supported the stable binding of these compounds to SIK2. These computational findings highlight the potential of these leads as novel SIK2 inhibitors, warranting future in vitro and in vivo validation.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 12","pages":"1129-1154"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2443844","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM. The structural stability of the predicted SIK2 model was validated using computational methods and subsequently employed for structure-based virtual screening (SBVS) of over 38,000 MNPs. This approach identified five promising candidates: CMNPD21753 and CMNPD13370 from the Comprehensive Marine Natural Product Database, MNPD10685 from the Marine Natural Products Database, and SWMDRR053 and SWMDRR052 from the Seaweed Metabolite Database. The identified compounds demonstrated docking scores ranging from -7.64 to -11.95 kcal/mol and MMGBSA binding scores between -33.29 and -68.29 kcal/mol, with favourable predicted pharmacokinetic and toxicity profiles. Molecular dynamics simulations (MDS) revealed stronger predicted binding affinity for these compounds compared to ARN-3236, a known SIK2 inhibitor. Principal component (PC)-based free energy landscape (FEL) analysis further supported the stable binding of these compounds to SIK2. These computational findings highlight the potential of these leads as novel SIK2 inhibitors, warranting future in vitro and in vivo validation.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.