Poly(L-lysine)-block-poly(ethylene glycol)-block-poly(L-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.
{"title":"Poly(<sub>L</sub>-lysine)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(<sub>L</sub>-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.","authors":"Yuta Koda, Yukio Nagasaki","doi":"10.1080/14686996.2024.2432856","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(<sub>L</sub>-lysine)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(<sub>L</sub>-lysine) (PLys-<i>block</i>-PEG-<i>block</i>-PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano<sup>Lys/PAAc</sup> or Nano<sup>Lys/PSS</sup>) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation. The incorporation of silica gel nanoparticles into the PIC flower micelles also resulted in irreversible gelation phenomena. The highest storage modulus exceeded 10 kPa after gelation, which is sufficient for practical applications. This study demonstrates the potential of these PIC-based hydrogels as biomaterials with tunable properties for biomedical applications.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2432856"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2432856","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(L-lysine)-block-poly(ethylene glycol)-block-poly(L-lysine) (PLys-block-PEG-block-PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (NanoLys/PAAc or NanoLys/PSS) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation. The incorporation of silica gel nanoparticles into the PIC flower micelles also resulted in irreversible gelation phenomena. The highest storage modulus exceeded 10 kPa after gelation, which is sufficient for practical applications. This study demonstrates the potential of these PIC-based hydrogels as biomaterials with tunable properties for biomedical applications.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.