SampleExplorer: using language models to discover relevant transcriptome data.

Wee Loong Chin, Timo Lassmann
{"title":"SampleExplorer: using language models to discover relevant transcriptome data.","authors":"Wee Loong Chin, Timo Lassmann","doi":"10.1093/bioinformatics/btae759","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Over the last two decades, transcriptomics has become a standard technique in biomedical research. We now have large databases of RNA-seq data, accompanied by valuable metadata detailing scientific objectives and the experimental procedures used. The metadata is crucial in understanding and replicating published studies, but so far has been underutilized in helping researchers to discover existing datasets.</p><p><strong>Results: </strong>We present SampleExplorer, a tool allowing researchers to search for relevant data using both text and gene set queries. SampleExplorer embeds sample metadata and uses a transformer-based language model to retrieve similar datasets. Extensive benchmarking (see Supplementary Materials and Methods) using the ARCHS4 database demonstrates that SampleExplorer provides an effective approach for retrieving biologically relevant samples from large-scale transcriptomicdata. This tool provides an efficient approach for discovering relevant gene expression datasets in large public repositories. It improves sample and dataset identification across diverse experimental contexts, helping researchers leverage existing transcriptomic data for potential replication or verification studies.</p><p><p>Availability and implementation: SampleExplorer is available as a Python package compatible with versions 3.9 to 3.11, available for installation via the Python Package Index (PyPI). The codebase and documentation are accessible at https://github.com/wlchin/SampleExplorer. Supplementary data (Supplementary Materials and Methods) provides detailed methodological information, including an algorithmic description of the retrieval process and data preparation steps.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Over the last two decades, transcriptomics has become a standard technique in biomedical research. We now have large databases of RNA-seq data, accompanied by valuable metadata detailing scientific objectives and the experimental procedures used. The metadata is crucial in understanding and replicating published studies, but so far has been underutilized in helping researchers to discover existing datasets.

Results: We present SampleExplorer, a tool allowing researchers to search for relevant data using both text and gene set queries. SampleExplorer embeds sample metadata and uses a transformer-based language model to retrieve similar datasets. Extensive benchmarking (see Supplementary Materials and Methods) using the ARCHS4 database demonstrates that SampleExplorer provides an effective approach for retrieving biologically relevant samples from large-scale transcriptomicdata. This tool provides an efficient approach for discovering relevant gene expression datasets in large public repositories. It improves sample and dataset identification across diverse experimental contexts, helping researchers leverage existing transcriptomic data for potential replication or verification studies.

Availability and implementation: SampleExplorer is available as a Python package compatible with versions 3.9 to 3.11, available for installation via the Python Package Index (PyPI). The codebase and documentation are accessible at https://github.com/wlchin/SampleExplorer. Supplementary data (Supplementary Materials and Methods) provides detailed methodological information, including an algorithmic description of the retrieval process and data preparation steps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SampleExplorer:使用语言模型来发现相关转录组数据。
动机:在过去的二十年里,转录组学已经成为生物医学研究的标准技术。我们现在拥有大量的RNA-seq数据数据库,并附有详细说明科学目标和实验程序的有价值的元数据。元数据对于理解和复制已发表的研究至关重要,但是迄今为止在帮助研究人员发现现有数据集方面还没有得到充分利用。结果:我们提出了SampleExplorer,一个允许研究人员使用文本和基因集查询来搜索相关数据的工具。SampleExplorer嵌入样例元数据,并使用基于转换器的语言模型(LM)检索类似的数据集。使用ARCHS4数据库进行广泛的基准测试(见材料和方法)表明,SampleExplorer为从大规模转录组学数据中检索生物学相关样本提供了有效的方法。结论:SampleExplorer为在大型公共存储库中发现相关基因表达数据集提供了有效的方法。它改善了不同实验背景下的样本和数据集识别,帮助研究人员利用现有的转录组学数据进行潜在的复制或验证研究。补充信息:补充数据(材料和方法)可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1