Synthesis and Characterization of a Nanoclay Reinforced Gelatin-Based Hybrid Hydrogel

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2025-01-08 DOI:10.1002/jbm.a.37870
Mahmoud A. Sakr, Sumi Siddiqua, Su Ryon Shin, Keekyoung Kim
{"title":"Synthesis and Characterization of a Nanoclay Reinforced Gelatin-Based Hybrid Hydrogel","authors":"Mahmoud A. Sakr,&nbsp;Sumi Siddiqua,&nbsp;Su Ryon Shin,&nbsp;Keekyoung Kim","doi":"10.1002/jbm.a.37870","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bentonite clay nanoparticles assume a pivotal role in 3D bioprinting and tissue engineering by augmenting the mechanical rigidity and biological efficacy of hydrogels. In this investigation, Span80 was employed as a surfactant to facilitate the synthesis of uniformly sized bentonite nanoparticles measuring approximately 700 nm in diameter. The resultant hybrid hydrogel displaced a marked increase in compressive modulus, achieving a peak value of 17.5 kPa, including 1% bentonite twice that of the unmodified gelatin methacryloyl (GelMA). The discernible enhancements in the physical and biological characteristics of the hydrogel underscore its considerable potential for applications in tissue engineering. This includes heightened mechanical rigidity, robust cell viability, and a meticulously regulated degradation rate. While further examinations are imperative to evaluate the viability of the developed hydrogel comprehensively, its auspicious physical and biological attributes strongly suggest its potential utility in the domain of tissue engineering and bioprinting.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37870","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bentonite clay nanoparticles assume a pivotal role in 3D bioprinting and tissue engineering by augmenting the mechanical rigidity and biological efficacy of hydrogels. In this investigation, Span80 was employed as a surfactant to facilitate the synthesis of uniformly sized bentonite nanoparticles measuring approximately 700 nm in diameter. The resultant hybrid hydrogel displaced a marked increase in compressive modulus, achieving a peak value of 17.5 kPa, including 1% bentonite twice that of the unmodified gelatin methacryloyl (GelMA). The discernible enhancements in the physical and biological characteristics of the hydrogel underscore its considerable potential for applications in tissue engineering. This includes heightened mechanical rigidity, robust cell viability, and a meticulously regulated degradation rate. While further examinations are imperative to evaluate the viability of the developed hydrogel comprehensively, its auspicious physical and biological attributes strongly suggest its potential utility in the domain of tissue engineering and bioprinting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米粘土增强明胶基杂化水凝胶的合成与表征。
膨润土纳米颗粒通过增强水凝胶的机械刚性和生物功效,在生物3D打印和组织工程中发挥着关键作用。在这项研究中,Span80被用作表面活性剂,以促进合成直径约700 nm的均匀尺寸的膨润土纳米颗粒。由此产生的杂化水凝胶的压缩模量显著增加,达到17.5 kPa的峰值,其中1%的膨润土是未改性明胶甲基丙烯酰(GelMA)的两倍。水凝胶在物理和生物特性上的显著增强强调了其在组织工程中的巨大应用潜力。这包括提高机械刚性,稳健的细胞活力,和精心调节的降解率。虽然需要进一步的检查来全面评估所开发的水凝胶的可行性,但其良好的物理和生物特性强烈表明其在组织工程和生物打印领域的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Keratin Rich PCL Blended Nano-Microfibrous Sheet as a Bioactive Immunomodulatory ECM Analog Toward Dermal Wound Healing—In Vitro and In Vivo Responses Fabrication of 3D Hemispherical PCL-Based Scaffolds Through Far-Field Electrospinning Method for Their Potential Use as Contact Lenses Measurement and Comparison of Hyaluronic Acid Hydrogel Mechanics Across Length Scales Optimizing Tissue-Engineered Periosteum Biochemical Cues to Hasten Bone Allograft Healing Layer-By-Layer Functionalized Gauze With Designed α-Sheet Peptides Inhibits E. coli and S. aureus Biofilm Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1