The stock status of narrow-barred Spanish mackerel, Scomberomorus commerson (Lacépède, 1800) in the southern Arabian Gulf: a case study using multiple length-based assessment approaches
Mohamed AlMusallami, Mark Dimech, Franklin Francis, Waleed Hamza, Aaron C. Henderson, Sabir Bin Muzaffar, Giuseppe Scarcella, Nazli Demirel, Dario Pinello
{"title":"The stock status of narrow-barred Spanish mackerel, Scomberomorus commerson (Lacépède, 1800) in the southern Arabian Gulf: a case study using multiple length-based assessment approaches","authors":"Mohamed AlMusallami, Mark Dimech, Franklin Francis, Waleed Hamza, Aaron C. Henderson, Sabir Bin Muzaffar, Giuseppe Scarcella, Nazli Demirel, Dario Pinello","doi":"10.3389/fmars.2024.1492238","DOIUrl":null,"url":null,"abstract":"This study evaluates the stock status of <jats:italic>Scomberomorus commerson</jats:italic> in the southern Arabian Gulf, particularly in Abu Dhabi waters, using length-based models to address data limitations in fisheries assessments. The findings contribute critical insights into management practices using four length-based models, namely, LBI, LBB, LBSPR, and LIME, to analyze length frequency distributions from commercial catches between 2011 and 2023. The results indicate that the stock is overfished, with low proportions of mature and optimal-sized individuals and an excessive harvest of juveniles, as shown by the model estimates of F/M ratios and SPR values below target levels. From 2011 to 2019, the biomass declined sharply, but signs of recovery were evident by 2023 due to management actions, such as a gillnet ban introduced in 2019. The final-year estimates revealed a B/Bmsy ratio of 1.0 and F/M of 1.2, suggesting ongoing but reduced overfishing pressures. These outcomes underscore the importance of ongoing data-limited assessment methods in monitoring exploited stocks, providing evidence that restrictive measures have positively impacted biomass recovery. The convergence of outputs across methods, such as the indication of overfishing in <jats:italic>S. commerson</jats:italic> stocks, suggests that implementing multiple models enhances the robustness of management recommendations, including the enforcement of minimum size limits or reductions in fishing efforts or restriction of certain fishing methods. Overall, this study highlights the importance of using multiple models and choosing appropriate priors to improve the quality of stock assessments in data-limited fisheries.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"81 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1492238","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the stock status of Scomberomorus commerson in the southern Arabian Gulf, particularly in Abu Dhabi waters, using length-based models to address data limitations in fisheries assessments. The findings contribute critical insights into management practices using four length-based models, namely, LBI, LBB, LBSPR, and LIME, to analyze length frequency distributions from commercial catches between 2011 and 2023. The results indicate that the stock is overfished, with low proportions of mature and optimal-sized individuals and an excessive harvest of juveniles, as shown by the model estimates of F/M ratios and SPR values below target levels. From 2011 to 2019, the biomass declined sharply, but signs of recovery were evident by 2023 due to management actions, such as a gillnet ban introduced in 2019. The final-year estimates revealed a B/Bmsy ratio of 1.0 and F/M of 1.2, suggesting ongoing but reduced overfishing pressures. These outcomes underscore the importance of ongoing data-limited assessment methods in monitoring exploited stocks, providing evidence that restrictive measures have positively impacted biomass recovery. The convergence of outputs across methods, such as the indication of overfishing in S. commerson stocks, suggests that implementing multiple models enhances the robustness of management recommendations, including the enforcement of minimum size limits or reductions in fishing efforts or restriction of certain fishing methods. Overall, this study highlights the importance of using multiple models and choosing appropriate priors to improve the quality of stock assessments in data-limited fisheries.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.