Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-02-06 DOI:10.3389/fmars.2025.1529148
Ting Wang, Jiajun Xu, Randy A. Dahlgren, Qiang Liu, Yang Jia, Binbin Chen, Hanqin Xu, Zengling Ma, Liyin Qu
{"title":"Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems","authors":"Ting Wang, Jiajun Xu, Randy A. Dahlgren, Qiang Liu, Yang Jia, Binbin Chen, Hanqin Xu, Zengling Ma, Liyin Qu","doi":"10.3389/fmars.2025.1529148","DOIUrl":null,"url":null,"abstract":"Seaweed cultivation contributes to coastal carbon sequestration making it a compelling strategy to mitigate global climate change. <jats:italic>Porphyra</jats:italic> (commonly known as nori) is an economically important seaweed known to have high release rates for biogenic dissolved and particulate organic matter (DOM and POM). However, the impact of <jats:italic>Porphyra</jats:italic> cultivation on coastal organic matter dynamics remains unclear. To fill this knowledge gap, we conducted investigations examining the quantity and optical properties of DOM and POM, microbial community structures and relevant environmental factors along a continuum from a subtropical river through its adjacent coastal <jats:italic>Porphyra</jats:italic> cultivation zone during the cultivation and non-cultivation periods. Dissolved organic carbon (DOC) concentration was significantly elevated during the cultivation versus non-cultivation period, while particulate organic carbon (POC) concentration decreased, thereby resulting in a higher DOC/POC ratio in the water column. Endmember mixing analysis further suggested that autochthonous organic matter dominated in the coastal cultivation zone during both periods, with limited inputs of terrestrial organic carbon. Redundancy analysis revealed that more microbial modules mediated organic matter transformations during the cultivation period, leading to a 169% higher estuarine addition of microbially-sourced humic-like C3 compared to the non-cultivation period. Our findings demonstrate that <jats:italic>Porphyra</jats:italic> cultivation enhanced coastal carbon sequestration by promoting the autochthonous production and transformation of refractory DOM, which has important implications for the sustainable management and development of coastal blue carbon strategies.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1529148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seaweed cultivation contributes to coastal carbon sequestration making it a compelling strategy to mitigate global climate change. Porphyra (commonly known as nori) is an economically important seaweed known to have high release rates for biogenic dissolved and particulate organic matter (DOM and POM). However, the impact of Porphyra cultivation on coastal organic matter dynamics remains unclear. To fill this knowledge gap, we conducted investigations examining the quantity and optical properties of DOM and POM, microbial community structures and relevant environmental factors along a continuum from a subtropical river through its adjacent coastal Porphyra cultivation zone during the cultivation and non-cultivation periods. Dissolved organic carbon (DOC) concentration was significantly elevated during the cultivation versus non-cultivation period, while particulate organic carbon (POC) concentration decreased, thereby resulting in a higher DOC/POC ratio in the water column. Endmember mixing analysis further suggested that autochthonous organic matter dominated in the coastal cultivation zone during both periods, with limited inputs of terrestrial organic carbon. Redundancy analysis revealed that more microbial modules mediated organic matter transformations during the cultivation period, leading to a 169% higher estuarine addition of microbially-sourced humic-like C3 compared to the non-cultivation period. Our findings demonstrate that Porphyra cultivation enhanced coastal carbon sequestration by promoting the autochthonous production and transformation of refractory DOM, which has important implications for the sustainable management and development of coastal blue carbon strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Probiotic properties of Bacillus licheniformis HN318 and comparison of the effects of its bacterial cells and cultures on growth, immunity and disease resistance of hybrid grouper (Epinephelus polyphekadion♂ × Epinephelus fuscoguttatus♀) Hypoxia lowers cell carbon and nitrogen content and accelerates sinking of a marine diatom Thalassiosira pseudonana Trophic niche differentiation and foraging plasticity of long-finned pilot whales (Globicephala melas edwardii) in Tasmanian waters: insights from isotopic analysis Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems Marine Prosperity Areas: a framework for aligning ecological restoration and human well-being using area-based protections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1