Alkoxy-Directed Dienamine Catalysis in [4 + 2]-Cycloaddition: Enantioselective Synthesis of Benzo-[3]-ladderanol

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-11 DOI:10.1021/jacs.4c13713
Sayan Ray, Deepak Behera, Mahesh Singh Harariya, Subrata Das, Pradip K. Tarafdar, Santanu Mukherjee
{"title":"Alkoxy-Directed Dienamine Catalysis in [4 + 2]-Cycloaddition: Enantioselective Synthesis of Benzo-[3]-ladderanol","authors":"Sayan Ray, Deepak Behera, Mahesh Singh Harariya, Subrata Das, Pradip K. Tarafdar, Santanu Mukherjee","doi":"10.1021/jacs.4c13713","DOIUrl":null,"url":null,"abstract":"Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective <i>de novo</i> arene construction by desymmetrizing <i>meso</i>-enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine. Besides carrying out mechanistic elucidation through density functional theory (DFT) calculation, the utility of this newly developed strategy is demonstrated for the concise enantioselective synthesis of a benzo-analogue of the natural ladderane phospholipid component (+)-[3]-ladderanol. Designed as a functional analogue of natural [3]-ladderanol, this unnatural benzo-[3]-ladderanol was found to impart lower proton permeability and higher stability to the membrane compared to its natural counterpart.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"6 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13713","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective de novo arene construction by desymmetrizing meso-enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine. Besides carrying out mechanistic elucidation through density functional theory (DFT) calculation, the utility of this newly developed strategy is demonstrated for the concise enantioselective synthesis of a benzo-analogue of the natural ladderane phospholipid component (+)-[3]-ladderanol. Designed as a functional analogue of natural [3]-ladderanol, this unnatural benzo-[3]-ladderanol was found to impart lower proton permeability and higher stability to the membrane compared to its natural counterpart.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Alkoxy-Directed Dienamine Catalysis in [4 + 2]-Cycloaddition: Enantioselective Synthesis of Benzo-[3]-ladderanol Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1