Adaptive Biased Stochastic Optimization

Zhuang Yang
{"title":"Adaptive Biased Stochastic Optimization","authors":"Zhuang Yang","doi":"10.1109/TPAMI.2025.3528193","DOIUrl":null,"url":null,"abstract":"This work develops and analyzes a class of adaptive biased stochastic optimization (ABSO) algorithms from the perspective of the GEneralized Adaptive gRadient (GEAR) method that contains Adam, AdaGrad, RMSProp, etc. Particularly, two preferred biased stochastic optimization (BSO) algorithms, the biased stochastic variance reduction gradient (BSVRG) algorithm and the stochastic recursive gradient algorithm (SARAH), equipped with GEAR, are first considered in this work, leading to two ABSO algorithms: BSVRG-GEAR and SARAH-GEAR. We present a uniform analysis of ABSO algorithms for minimizing strongly convex (SC) and Polyak-Łojasiewicz (PŁ) composite objective functions. Second, we also use our framework to develop another novel BSO algorithm, adaptive biased stochastic conjugate gradient (coined BSCG-GEAR), which achieves the well-known oracle complexity. Specifically, under mild conditions, we prove that the resulting ABSO algorithms attain a linear convergence rate on both PŁ and SC cases. Moreover, we show that the complexity of the resulting ABSO algorithms is comparable to that of advanced stochastic gradient-based algorithms. Finally, we demonstrate the empirical superiority and the numerical stability of the resulting ABSO algorithms by conducting numerical experiments on different applications of machine learning.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"3067-3078"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10836750/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work develops and analyzes a class of adaptive biased stochastic optimization (ABSO) algorithms from the perspective of the GEneralized Adaptive gRadient (GEAR) method that contains Adam, AdaGrad, RMSProp, etc. Particularly, two preferred biased stochastic optimization (BSO) algorithms, the biased stochastic variance reduction gradient (BSVRG) algorithm and the stochastic recursive gradient algorithm (SARAH), equipped with GEAR, are first considered in this work, leading to two ABSO algorithms: BSVRG-GEAR and SARAH-GEAR. We present a uniform analysis of ABSO algorithms for minimizing strongly convex (SC) and Polyak-Łojasiewicz (PŁ) composite objective functions. Second, we also use our framework to develop another novel BSO algorithm, adaptive biased stochastic conjugate gradient (coined BSCG-GEAR), which achieves the well-known oracle complexity. Specifically, under mild conditions, we prove that the resulting ABSO algorithms attain a linear convergence rate on both PŁ and SC cases. Moreover, we show that the complexity of the resulting ABSO algorithms is comparable to that of advanced stochastic gradient-based algorithms. Finally, we demonstrate the empirical superiority and the numerical stability of the resulting ABSO algorithms by conducting numerical experiments on different applications of machine learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应有偏随机优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1