Neural-network-supported basis optimizer for the configuration interaction problem in quantum many-body clusters: Feasibility study and numerical proof

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2025-01-10 DOI:10.1103/physrevb.111.035124
Pavlo Bilous, Louis Thirion, Henri Menke, Maurits W. Haverkort, Adriana Pálffy, Philipp Hansmann
{"title":"Neural-network-supported basis optimizer for the configuration interaction problem in quantum many-body clusters: Feasibility study and numerical proof","authors":"Pavlo Bilous, Louis Thirion, Henri Menke, Maurits W. Haverkort, Adriana Pálffy, Philipp Hansmann","doi":"10.1103/physrevb.111.035124","DOIUrl":null,"url":null,"abstract":"A neural-network approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency by iteratively identifying the most relevant Slater determinants for the ground state wave function. We benchmark our results against established methods and investigate the efficiency of our approach compared to another basis truncation scheme without a neural network. Our algorithm demonstrates a substantial improvement in the efficiency of determinant selection, yielding a more compact and computationally manageable basis without compromising accuracy. Given the straightforward application of our neural-network-supported selection scheme to other model Hamiltonians of quantum many-body clusters, our algorithm can significantly advance selective configuration interaction calculations in the context of correlated condensed matter. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"95 3 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035124","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A neural-network approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency by iteratively identifying the most relevant Slater determinants for the ground state wave function. We benchmark our results against established methods and investigate the efficiency of our approach compared to another basis truncation scheme without a neural network. Our algorithm demonstrates a substantial improvement in the efficiency of determinant selection, yielding a more compact and computationally manageable basis without compromising accuracy. Given the straightforward application of our neural-network-supported selection scheme to other model Hamiltonians of quantum many-body clusters, our algorithm can significantly advance selective configuration interaction calculations in the context of correlated condensed matter. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Autonomous demon exploiting heat and information at the trajectory level Krylov complexity and Trotter transitions in unitary circuit dynamics Optical conductivity of the topologically nontrivial MXenes Mo2HfC2O2 and W2HfC2O2 : First-principles calculation and effective model analysis Influence of hydrogen on the electronic structure in the transition metallic glass V80Zr20 Berry curvature and shift vector effects at high-order wave mixing in biased bilayer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1